Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Erlangen ; Nürnberg
2021
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | 1 Online-Ressource (iv, 212 Seiten) Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047116763 | ||
003 | DE-604 | ||
005 | 20211201 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 210201s2021 gw |||| o||u| ||||||eng d | ||
015 | |a 21,O02 |2 dnb | ||
016 | 7 | |a 1225938473 |2 DE-101 | |
024 | 7 | |a urn:nbn:de:bvb:29-opus4-156388 |2 urn | |
035 | |a (OCoLC)1235888852 | ||
035 | |a (DE-599)DNB1225938473 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 2\p |a 610 |2 23sdnb | ||
084 | |8 1\p |a 616.075 |2 23ksdnb | ||
100 | 1 | |a Breininger, Katharina |e Verfasser |0 (DE-588)1226105777 |4 aut | |
245 | 1 | 0 | |a Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair |c vorgelegt von Eva Katharina Breininger |
246 | 1 | 3 | |a Maschinelles Lernen und Deformationsmodellierung zur Workflow-kompatiblen Bildfusion für endovaskuläre Aortenreparaturen |
264 | 1 | |a Erlangen ; Nürnberg |c 2021 | |
300 | |a 1 Online-Ressource (iv, 212 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Alexander-Universität Erlangen-Nürnberg |d 2020 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |a Registrierung |g Bildverarbeitung |0 (DE-588)4778903-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a EVAR |0 (DE-588)4250488-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |8 3\p |a Fusion |
650 | 0 | 7 | |8 4\p |a Workflow |
650 | 0 | 7 | |8 5\p |a Machine learning |
653 | |a Image Guidance | ||
653 | |a Image Fusion | ||
653 | |a Deformation Modeling | ||
653 | |a Endovascular Aortic Repair | ||
653 | |a Deep Learning | ||
653 | |a Fluoroscopy | ||
653 | |a X-ray Imaging | ||
653 | |a Guidewire Detection | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Registrierung |g Bildverarbeitung |0 (DE-588)4778903-7 |D s |
689 | 0 | 2 | |a EVAR |0 (DE-588)4250488-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-156388 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1225938473/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |q application/pdf |u https://open.fau.de/handle/openfau/15638 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032523147 | ||
883 | 0 | |8 1\p |a aepkn |c 0,90861 |d 20210130 |q DE-101 |u https://d-nb.info/provenance/plan#aepkn | |
883 | 0 | |8 2\p |a aepsg |c 0,99486 |d 20210130 |q DE-101 |u https://d-nb.info/provenance/plan#aepsg | |
883 | 0 | |8 3\p |a aeplcsh |c 0,05000 |d 20210130 |q DE-101 |u https://d-nb.info/provenance/plan#aeplcsh |0 (DLC)sh85052594 |0 http://id.loc.gov/authorities/subjects/sh85052594 |2 lcsh | |
883 | 0 | |8 4\p |a aeplcsh |c 0,02857 |d 20210130 |q DE-101 |u https://d-nb.info/provenance/plan#aeplcsh |0 (DLC)sh97009122 |0 http://id.loc.gov/authorities/subjects/sh97009122 |2 lcsh | |
883 | 0 | |8 5\p |a aeplcsh |c 0,01429 |d 20210130 |q DE-101 |u https://d-nb.info/provenance/plan#aeplcsh |0 (DLC)sh85079324 |0 http://id.loc.gov/authorities/subjects/sh85079324 |2 lcsh |
Datensatz im Suchindex
_version_ | 1804182157856342016 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Breininger, Katharina |
author_GND | (DE-588)1226105777 |
author_facet | Breininger, Katharina |
author_role | aut |
author_sort | Breininger, Katharina |
author_variant | k b kb |
building | Verbundindex |
bvnumber | BV047116763 |
collection | ebook |
ctrlnum | (OCoLC)1235888852 (DE-599)DNB1225938473 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03415nmm a2200697zc 4500</leader><controlfield tag="001">BV047116763</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211201 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210201s2021 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,O02</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1225938473</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-156388</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235888852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1225938473</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">610</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">616.075</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Breininger, Katharina</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1226105777</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair</subfield><subfield code="c">vorgelegt von Eva Katharina Breininger</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Maschinelles Lernen und Deformationsmodellierung zur Workflow-kompatiblen Bildfusion für endovaskuläre Aortenreparaturen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (iv, 212 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="d">2020</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Registrierung</subfield><subfield code="g">Bildverarbeitung</subfield><subfield code="0">(DE-588)4778903-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">EVAR</subfield><subfield code="0">(DE-588)4250488-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">3\p</subfield><subfield code="a">Fusion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Workflow</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">5\p</subfield><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Image Guidance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Image Fusion</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deformation Modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Endovascular Aortic Repair</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fluoroscopy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">X-ray Imaging</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Guidewire Detection</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Registrierung</subfield><subfield code="g">Bildverarbeitung</subfield><subfield code="0">(DE-588)4778903-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">EVAR</subfield><subfield code="0">(DE-588)4250488-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-156388</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1225938473/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://open.fau.de/handle/openfau/15638</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032523147</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">aepkn</subfield><subfield code="c">0,90861</subfield><subfield code="d">20210130</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aepkn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">aepsg</subfield><subfield code="c">0,99486</subfield><subfield code="d">20210130</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aepsg</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">aeplcsh</subfield><subfield code="c">0,05000</subfield><subfield code="d">20210130</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aeplcsh</subfield><subfield code="0">(DLC)sh85052594</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052594</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">aeplcsh</subfield><subfield code="c">0,02857</subfield><subfield code="d">20210130</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aeplcsh</subfield><subfield code="0">(DLC)sh97009122</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97009122</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">aeplcsh</subfield><subfield code="c">0,01429</subfield><subfield code="d">20210130</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aeplcsh</subfield><subfield code="0">(DLC)sh85079324</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield><subfield code="2">lcsh</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047116763 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:27:49Z |
indexdate | 2024-07-10T09:03:06Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032523147 |
oclc_num | 1235888852 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 1 Online-Ressource (iv, 212 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
record_format | marc |
spelling | Breininger, Katharina Verfasser (DE-588)1226105777 aut Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair vorgelegt von Eva Katharina Breininger Maschinelles Lernen und Deformationsmodellierung zur Workflow-kompatiblen Bildfusion für endovaskuläre Aortenreparaturen Erlangen ; Nürnberg 2021 1 Online-Ressource (iv, 212 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Friedrich-Alexander-Universität Erlangen-Nürnberg 2020 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager Registrierung Bildverarbeitung (DE-588)4778903-7 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf EVAR (DE-588)4250488-0 gnd rswk-swf 3\p Fusion 4\p Workflow 5\p Machine learning Image Guidance Image Fusion Deformation Modeling Endovascular Aortic Repair Deep Learning Fluoroscopy X-ray Imaging Guidewire Detection (DE-588)4113937-9 Hochschulschrift gnd-content Maschinelles Lernen (DE-588)4193754-5 s Registrierung Bildverarbeitung (DE-588)4778903-7 s EVAR (DE-588)4250488-0 s DE-604 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-156388 Resolving-System kostenfrei Volltext https://d-nb.info/1225938473/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext application/pdf https://open.fau.de/handle/openfau/15638 Verlag kostenfrei Volltext 1\p aepkn 0,90861 20210130 DE-101 https://d-nb.info/provenance/plan#aepkn 2\p aepsg 0,99486 20210130 DE-101 https://d-nb.info/provenance/plan#aepsg 3\p aeplcsh 0,05000 20210130 DE-101 https://d-nb.info/provenance/plan#aeplcsh (DLC)sh85052594 http://id.loc.gov/authorities/subjects/sh85052594 lcsh 4\p aeplcsh 0,02857 20210130 DE-101 https://d-nb.info/provenance/plan#aeplcsh (DLC)sh97009122 http://id.loc.gov/authorities/subjects/sh97009122 lcsh 5\p aeplcsh 0,01429 20210130 DE-101 https://d-nb.info/provenance/plan#aeplcsh (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 lcsh |
spellingShingle | Breininger, Katharina Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair Registrierung Bildverarbeitung (DE-588)4778903-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd EVAR (DE-588)4250488-0 gnd 3\p Fusion 4\p Workflow 5\p Machine learning |
subject_GND | (DE-588)4778903-7 (DE-588)4193754-5 (DE-588)4250488-0 (DE-588)4113937-9 |
title | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair |
title_alt | Maschinelles Lernen und Deformationsmodellierung zur Workflow-kompatiblen Bildfusion für endovaskuläre Aortenreparaturen |
title_auth | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair |
title_exact_search | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair |
title_exact_search_txtP | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair |
title_full | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair vorgelegt von Eva Katharina Breininger |
title_fullStr | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair vorgelegt von Eva Katharina Breininger |
title_full_unstemmed | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair vorgelegt von Eva Katharina Breininger |
title_short | Machine Learning and Deformation Modeling for Workflow-Compliant Image Fusion during Endovascular Aortic Repair |
title_sort | machine learning and deformation modeling for workflow compliant image fusion during endovascular aortic repair |
topic | Registrierung Bildverarbeitung (DE-588)4778903-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd EVAR (DE-588)4250488-0 gnd 3\p Fusion 4\p Workflow 5\p Machine learning |
topic_facet | Registrierung Bildverarbeitung Maschinelles Lernen EVAR Fusion Workflow Machine learning Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-156388 https://d-nb.info/1225938473/34 https://open.fau.de/handle/openfau/15638 |
work_keys_str_mv | AT breiningerkatharina machinelearninganddeformationmodelingforworkflowcompliantimagefusionduringendovascularaorticrepair AT breiningerkatharina maschinelleslernenunddeformationsmodellierungzurworkflowkompatiblenbildfusionfurendovaskulareaortenreparaturen |