Renormalization Group:
Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2020]
|
Schriftenreihe: | Physics Notes
1 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 UPA01 Volltext |
Zusammenfassung: | Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics, the scalar quantum field theories in two and three space-time dimensions, and Tomonaga's theory of the ground state of one-dimensional Fermi systems. The dimension dependence is discussed together with the related existence of anomalies (in Tomonaga's theory and in 4 -e dimensions for the critical point). The theory of Bose condensation at zero temperature in three space dimensions is also considered. Attention is focused on results that can in principle be formally established from a mathematical point of view. The 4 -e dimensions theory, Bose condensation, as well as a few other statements are exceptions to this rule, because no complete treatment is yet available. However, the truly mathematical details are intentionally omitted and only referred to. This is done with the purpose of stressing the unifying conceptual structure rather than the technical differences or subtleties |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021) |
Beschreibung: | 1 online resource |
ISBN: | 9780691221694 |
DOI: | 10.1515/9780691221694 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047111923 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210129s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780691221694 |9 978-0-691-22169-4 | ||
024 | 7 | |a 10.1515/9780691221694 |2 doi | |
035 | |a (ZDB-23-DGG)9780691221694 | ||
035 | |a (OCoLC)1235888930 | ||
035 | |a (DE-599)BVBBV047111923 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 | ||
082 | 0 | |a 530.1/33 |2 22 | |
100 | 1 | |a Benfatto, Giuseppe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Renormalization Group |c Giovanni Gallavotti, Giuseppe Benfatto |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2020] | |
264 | 4 | |c © 1995 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Physics Notes |v 1 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021) | ||
520 | |a Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics, the scalar quantum field theories in two and three space-time dimensions, and Tomonaga's theory of the ground state of one-dimensional Fermi systems. The dimension dependence is discussed together with the related existence of anomalies (in Tomonaga's theory and in 4 -e dimensions for the critical point). The theory of Bose condensation at zero temperature in three space dimensions is also considered. Attention is focused on results that can in principle be formally established from a mathematical point of view. The 4 -e dimensions theory, Bose condensation, as well as a few other statements are exceptions to this rule, because no complete treatment is yet available. However, the truly mathematical details are intentionally omitted and only referred to. This is done with the purpose of stressing the unifying conceptual structure rather than the technical differences or subtleties | ||
546 | |a In English | ||
650 | 4 | |a Anomalous dimension | |
650 | 4 | |a Asymptotic freedom | |
650 | 4 | |a Beta function | |
650 | 4 | |a Bose condensation | |
650 | 4 | |a Chemical potential | |
650 | 4 | |a Critical point | |
650 | 4 | |a Dimensional potential | |
650 | 4 | |a Euclidean field | |
650 | 4 | |a Fermi liquid | |
650 | 4 | |a Feynman graph | |
650 | 4 | |a Gaussian measure | |
650 | 4 | |a Generating functional | |
650 | 4 | |a Grassmannian variable | |
650 | 4 | |a Hadamard inequality | |
650 | 4 | |a Infrared problem | |
650 | 4 | |a Irrelevant part | |
650 | 4 | |a Kernel | |
650 | 4 | |a Landau-Ginsburg model | |
650 | 4 | |a Localization operator | |
650 | 4 | |a Marginal operator | |
650 | 4 | |a Normal critical behavior | |
650 | 4 | |a Propagator matrix | |
650 | 4 | |a Propagator | |
650 | 4 | |a Renormalizable theory | |
650 | 4 | |a Renormalization group | |
650 | 4 | |a Schwinger function | |
650 | 4 | |a Superfluid behavior | |
650 | 4 | |a Tree formalism | |
650 | 4 | |a Ultraviolet problem | |
650 | 4 | |a Wick monomial | |
650 | 7 | |a SCIENCE / Physics / General |2 bisacsh | |
650 | 4 | |a Critical phenomena (Physics) | |
650 | 4 | |a Renormalization group | |
700 | 1 | |a Gallavotti, Giovanni |4 aut | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691221694 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032518362 | ||
966 | e | |u https://doi.org/10.1515/9780691221694?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691221694?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691221694?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691221694?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691221694?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691221694?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691221694?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182146324103168 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Benfatto, Giuseppe Gallavotti, Giovanni |
author_facet | Benfatto, Giuseppe Gallavotti, Giovanni |
author_role | aut aut |
author_sort | Benfatto, Giuseppe |
author_variant | g b gb g g gg |
building | Verbundindex |
bvnumber | BV047111923 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9780691221694 (OCoLC)1235888930 (DE-599)BVBBV047111923 |
dewey-full | 530.1/33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/33 |
dewey-search | 530.1/33 |
dewey-sort | 3530.1 233 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
doi_str_mv | 10.1515/9780691221694 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04522nmm a2200865zcb4500</leader><controlfield tag="001">BV047111923</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210129s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691221694</subfield><subfield code="9">978-0-691-22169-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691221694</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691221694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235888930</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047111923</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/33</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benfatto, Giuseppe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renormalization Group</subfield><subfield code="c">Giovanni Gallavotti, Giuseppe Benfatto</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics Notes</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics, the scalar quantum field theories in two and three space-time dimensions, and Tomonaga's theory of the ground state of one-dimensional Fermi systems. The dimension dependence is discussed together with the related existence of anomalies (in Tomonaga's theory and in 4 -e dimensions for the critical point). The theory of Bose condensation at zero temperature in three space dimensions is also considered. Attention is focused on results that can in principle be formally established from a mathematical point of view. The 4 -e dimensions theory, Bose condensation, as well as a few other statements are exceptions to this rule, because no complete treatment is yet available. However, the truly mathematical details are intentionally omitted and only referred to. This is done with the purpose of stressing the unifying conceptual structure rather than the technical differences or subtleties</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomalous dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic freedom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beta function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bose condensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimensional potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fermi liquid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generating functional</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grassmannian variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hadamard inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrared problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Irrelevant part</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landau-Ginsburg model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Localization operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marginal operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal critical behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Propagator matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Propagator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalizable theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwinger function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superfluid behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tree formalism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultraviolet problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wick monomial</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical phenomena (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gallavotti, Giovanni</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691221694</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032518362</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691221694?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691221694?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691221694?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691221694?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691221694?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691221694?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691221694?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047111923 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:26:43Z |
indexdate | 2024-07-10T09:02:55Z |
institution | BVB |
isbn | 9780691221694 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032518362 |
oclc_num | 1235888930 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
series2 | Physics Notes |
spelling | Benfatto, Giuseppe Verfasser aut Renormalization Group Giovanni Gallavotti, Giuseppe Benfatto Princeton, NJ Princeton University Press [2020] © 1995 1 online resource txt rdacontent c rdamedia cr rdacarrier Physics Notes 1 Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021) Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics, the scalar quantum field theories in two and three space-time dimensions, and Tomonaga's theory of the ground state of one-dimensional Fermi systems. The dimension dependence is discussed together with the related existence of anomalies (in Tomonaga's theory and in 4 -e dimensions for the critical point). The theory of Bose condensation at zero temperature in three space dimensions is also considered. Attention is focused on results that can in principle be formally established from a mathematical point of view. The 4 -e dimensions theory, Bose condensation, as well as a few other statements are exceptions to this rule, because no complete treatment is yet available. However, the truly mathematical details are intentionally omitted and only referred to. This is done with the purpose of stressing the unifying conceptual structure rather than the technical differences or subtleties In English Anomalous dimension Asymptotic freedom Beta function Bose condensation Chemical potential Critical point Dimensional potential Euclidean field Fermi liquid Feynman graph Gaussian measure Generating functional Grassmannian variable Hadamard inequality Infrared problem Irrelevant part Kernel Landau-Ginsburg model Localization operator Marginal operator Normal critical behavior Propagator matrix Propagator Renormalizable theory Renormalization group Schwinger function Superfluid behavior Tree formalism Ultraviolet problem Wick monomial SCIENCE / Physics / General bisacsh Critical phenomena (Physics) Gallavotti, Giovanni aut https://doi.org/10.1515/9780691221694 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Benfatto, Giuseppe Gallavotti, Giovanni Renormalization Group Anomalous dimension Asymptotic freedom Beta function Bose condensation Chemical potential Critical point Dimensional potential Euclidean field Fermi liquid Feynman graph Gaussian measure Generating functional Grassmannian variable Hadamard inequality Infrared problem Irrelevant part Kernel Landau-Ginsburg model Localization operator Marginal operator Normal critical behavior Propagator matrix Propagator Renormalizable theory Renormalization group Schwinger function Superfluid behavior Tree formalism Ultraviolet problem Wick monomial SCIENCE / Physics / General bisacsh Critical phenomena (Physics) |
title | Renormalization Group |
title_auth | Renormalization Group |
title_exact_search | Renormalization Group |
title_exact_search_txtP | Renormalization Group |
title_full | Renormalization Group Giovanni Gallavotti, Giuseppe Benfatto |
title_fullStr | Renormalization Group Giovanni Gallavotti, Giuseppe Benfatto |
title_full_unstemmed | Renormalization Group Giovanni Gallavotti, Giuseppe Benfatto |
title_short | Renormalization Group |
title_sort | renormalization group |
topic | Anomalous dimension Asymptotic freedom Beta function Bose condensation Chemical potential Critical point Dimensional potential Euclidean field Fermi liquid Feynman graph Gaussian measure Generating functional Grassmannian variable Hadamard inequality Infrared problem Irrelevant part Kernel Landau-Ginsburg model Localization operator Marginal operator Normal critical behavior Propagator matrix Propagator Renormalizable theory Renormalization group Schwinger function Superfluid behavior Tree formalism Ultraviolet problem Wick monomial SCIENCE / Physics / General bisacsh Critical phenomena (Physics) |
topic_facet | Anomalous dimension Asymptotic freedom Beta function Bose condensation Chemical potential Critical point Dimensional potential Euclidean field Fermi liquid Feynman graph Gaussian measure Generating functional Grassmannian variable Hadamard inequality Infrared problem Irrelevant part Kernel Landau-Ginsburg model Localization operator Marginal operator Normal critical behavior Propagator matrix Propagator Renormalizable theory Renormalization group Schwinger function Superfluid behavior Tree formalism Ultraviolet problem Wick monomial SCIENCE / Physics / General Critical phenomena (Physics) |
url | https://doi.org/10.1515/9780691221694 |
work_keys_str_mv | AT benfattogiuseppe renormalizationgroup AT gallavottigiovanni renormalizationgroup |