Hybrid Feedback Control:
A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2020]
|
Schriftenreihe: | Princeton Series in Applied Mathematics
73 |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-898 DE-859 DE-860 DE-706 DE-739 Volltext |
Zusammenfassung: | A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021) |
Beschreibung: | 1 online resource (424 pages) 78 b/w illus. 1 table |
ISBN: | 9780691189536 |
DOI: | 10.1515/9780691189536 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV047111889 | ||
003 | DE-604 | ||
005 | 20241113 | ||
007 | cr|uuu---uuuuu | ||
008 | 210129s2020 xx a||| o|||| 00||| eng d | ||
020 | |a 9780691189536 |9 978-0-691-18953-6 | ||
024 | 7 | |a 10.1515/9780691189536 |2 doi | |
035 | |a (ZDB-23-DGG)9780691189536 | ||
035 | |a (OCoLC)1235888797 | ||
035 | |a (DE-599)BVBBV047111889 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-898 |a DE-706 | ||
100 | 1 | |a Sanfelice, Ricardo G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hybrid Feedback Control |c Ricardo G. Sanfelice |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2020] | |
264 | 4 | |c © 2021 | |
300 | |a 1 online resource (424 pages) |b 78 b/w illus. 1 table | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Princeton Series in Applied Mathematics |v 73 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021) | ||
520 | |a A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation | ||
546 | |a In English | ||
650 | 4 | |a Lyapunov theory | |
650 | 4 | |a Switching in Systems and Control;Daniel Liberzon;An Introduction to Hybrid Dynamical Systems;Arjan J. van der Schaft;Hans Schumacher;Impulsive and Hybrid Dynamical Systems;Wassim Haddad;Formal Verification of Control System Software;Pierre-Loic Garoche;control theory | |
650 | 4 | |a automation | |
650 | 4 | |a buffer variables | |
650 | 4 | |a closed-loop system response | |
650 | 4 | |a continuous-time | |
650 | 4 | |a coupling mechanism | |
650 | 4 | |a cyberphysical systems | |
650 | 4 | |a discrete time | |
650 | 4 | |a engineering systems | |
650 | 4 | |a feedback control design | |
650 | 4 | |a flashing fireflies | |
650 | 4 | |a flows and jumps | |
650 | 4 | |a hybrid behavior | |
650 | 4 | |a hybrid control strategies | |
650 | 4 | |a hybrid dynamical system | |
650 | 4 | |a hybrid systems | |
650 | 4 | |a interfaces | |
650 | 4 | |a internet of things | |
650 | 4 | |a logic-based algorithm | |
650 | 4 | |a numerical simulation | |
650 | 4 | |a robotic humanoids | |
650 | 4 | |a self-driving vehicles | |
650 | 4 | |a signal conditioners | |
650 | 4 | |a subsystems | |
650 | 4 | |a synergistic feedback | |
650 | 4 | |a systems analysis | |
650 | 4 | |a the controller | |
650 | 4 | |a the plant | |
650 | 4 | |a timer variable | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691189536 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA20 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032518328 | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA20 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691189536?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1815619876682727424 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sanfelice, Ricardo G. |
author_facet | Sanfelice, Ricardo G. |
author_role | aut |
author_sort | Sanfelice, Ricardo G. |
author_variant | r g s rg rgs |
building | Verbundindex |
bvnumber | BV047111889 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9780691189536 (OCoLC)1235888797 (DE-599)BVBBV047111889 |
doi_str_mv | 10.1515/9780691189536 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV047111889</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241113</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210129s2020 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691189536</subfield><subfield code="9">978-0-691-18953-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691189536</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691189536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235888797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047111889</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanfelice, Ricardo G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid Feedback Control</subfield><subfield code="c">Ricardo G. Sanfelice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (424 pages)</subfield><subfield code="b">78 b/w illus. 1 table</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton Series in Applied Mathematics</subfield><subfield code="v">73</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switching in Systems and Control;Daniel Liberzon;An Introduction to Hybrid Dynamical Systems;Arjan J. van der Schaft;Hans Schumacher;Impulsive and Hybrid Dynamical Systems;Wassim Haddad;Formal Verification of Control System Software;Pierre-Loic Garoche;control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">buffer variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">closed-loop system response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous-time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coupling mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyberphysical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">engineering systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feedback control design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flashing fireflies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flows and jumps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid control strategies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid dynamical system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">internet of things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">logic-based algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robotic humanoids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-driving vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signal conditioners</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subsystems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synergistic feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">systems analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">the controller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">the plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">timer variable</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691189536</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA20</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032518328</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA20</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691189536?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047111889 |
illustrated | Illustrated |
index_date | 2024-07-03T16:26:43Z |
indexdate | 2024-11-13T15:00:44Z |
institution | BVB |
isbn | 9780691189536 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032518328 |
oclc_num | 1235888797 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-898 DE-BY-UBR DE-706 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-898 DE-BY-UBR DE-706 |
physical | 1 online resource (424 pages) 78 b/w illus. 1 table |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA20 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA20 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
series2 | Princeton Series in Applied Mathematics |
spelling | Sanfelice, Ricardo G. Verfasser aut Hybrid Feedback Control Ricardo G. Sanfelice Princeton, NJ Princeton University Press [2020] © 2021 1 online resource (424 pages) 78 b/w illus. 1 table txt rdacontent c rdamedia cr rdacarrier Princeton Series in Applied Mathematics 73 Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Jan 2021) A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems.In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter.Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation In English Lyapunov theory Switching in Systems and Control;Daniel Liberzon;An Introduction to Hybrid Dynamical Systems;Arjan J. van der Schaft;Hans Schumacher;Impulsive and Hybrid Dynamical Systems;Wassim Haddad;Formal Verification of Control System Software;Pierre-Loic Garoche;control theory automation buffer variables closed-loop system response continuous-time coupling mechanism cyberphysical systems discrete time engineering systems feedback control design flashing fireflies flows and jumps hybrid behavior hybrid control strategies hybrid dynamical system hybrid systems interfaces internet of things logic-based algorithm numerical simulation robotic humanoids self-driving vehicles signal conditioners subsystems synergistic feedback systems analysis the controller the plant timer variable MATHEMATICS / Applied bisacsh https://doi.org/10.1515/9780691189536 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sanfelice, Ricardo G. Hybrid Feedback Control Lyapunov theory Switching in Systems and Control;Daniel Liberzon;An Introduction to Hybrid Dynamical Systems;Arjan J. van der Schaft;Hans Schumacher;Impulsive and Hybrid Dynamical Systems;Wassim Haddad;Formal Verification of Control System Software;Pierre-Loic Garoche;control theory automation buffer variables closed-loop system response continuous-time coupling mechanism cyberphysical systems discrete time engineering systems feedback control design flashing fireflies flows and jumps hybrid behavior hybrid control strategies hybrid dynamical system hybrid systems interfaces internet of things logic-based algorithm numerical simulation robotic humanoids self-driving vehicles signal conditioners subsystems synergistic feedback systems analysis the controller the plant timer variable MATHEMATICS / Applied bisacsh |
title | Hybrid Feedback Control |
title_auth | Hybrid Feedback Control |
title_exact_search | Hybrid Feedback Control |
title_exact_search_txtP | Hybrid Feedback Control |
title_full | Hybrid Feedback Control Ricardo G. Sanfelice |
title_fullStr | Hybrid Feedback Control Ricardo G. Sanfelice |
title_full_unstemmed | Hybrid Feedback Control Ricardo G. Sanfelice |
title_short | Hybrid Feedback Control |
title_sort | hybrid feedback control |
topic | Lyapunov theory Switching in Systems and Control;Daniel Liberzon;An Introduction to Hybrid Dynamical Systems;Arjan J. van der Schaft;Hans Schumacher;Impulsive and Hybrid Dynamical Systems;Wassim Haddad;Formal Verification of Control System Software;Pierre-Loic Garoche;control theory automation buffer variables closed-loop system response continuous-time coupling mechanism cyberphysical systems discrete time engineering systems feedback control design flashing fireflies flows and jumps hybrid behavior hybrid control strategies hybrid dynamical system hybrid systems interfaces internet of things logic-based algorithm numerical simulation robotic humanoids self-driving vehicles signal conditioners subsystems synergistic feedback systems analysis the controller the plant timer variable MATHEMATICS / Applied bisacsh |
topic_facet | Lyapunov theory Switching in Systems and Control;Daniel Liberzon;An Introduction to Hybrid Dynamical Systems;Arjan J. van der Schaft;Hans Schumacher;Impulsive and Hybrid Dynamical Systems;Wassim Haddad;Formal Verification of Control System Software;Pierre-Loic Garoche;control theory automation buffer variables closed-loop system response continuous-time coupling mechanism cyberphysical systems discrete time engineering systems feedback control design flashing fireflies flows and jumps hybrid behavior hybrid control strategies hybrid dynamical system hybrid systems interfaces internet of things logic-based algorithm numerical simulation robotic humanoids self-driving vehicles signal conditioners subsystems synergistic feedback systems analysis the controller the plant timer variable MATHEMATICS / Applied |
url | https://doi.org/10.1515/9780691189536 |
work_keys_str_mv | AT sanfelicericardog hybridfeedbackcontrol |