Graph theory: a problem oriented approach
Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
MAA Press, an imprint of the American Mathematical Society
2020
|
Ausgabe: | Reprinted by the American Mathematical Society |
Schriftenreihe: | AMS/MAA textbooks
vol 53 |
Schlagworte: | |
Online-Zugang: | TUM01 TUM01 UBY01 |
Zusammenfassung: | Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook with those of a problem workbook. The material is presented through a series of approximately 360 strategically placed problems with connecting text. This is supplemented by 280 additional problems that are intended to be used as homework assignments. Concepts of graph theory are introduced, developed, and reinforced by working through leading questions posed in the problems.This problem-oriented format is intended to promote active involvement by the reader while always providing clear direction. This approach figures prominently on the presentation of proofs, which become more frequent and elaborate as the book progresses. Arguments are arranged in digestible chunks and always appear along with concrete examples to keep the readers firmly grounded in their motivation. Spanning tree algorithms, Euler paths, Hamilton paths and cycles, planar graphs, independence and covering, connections and obstructions, and vertex and edge colorings make up the core of the book. Hall's Theorem, the Konig-Egervary Theorem, Dilworth's Theorem and the Hungarian algorithm to the optional assignment problem, matrices, and latin squares are also explored |
Beschreibung: | Originally published by The Mathematical Association of America, 2008 (hardcover) and 2011 (softcover) |
Beschreibung: | 1 Online-Ressource (xvi, 205 Seiten) Illustrationen |
ISBN: | 9781470451851 |
Internformat
MARC
LEADER | 00000nmm a22000001cb4500 | ||
---|---|---|---|
001 | BV047108303 | ||
003 | DE-604 | ||
005 | 20240229 | ||
007 | cr|uuu---uuuuu | ||
008 | 210127s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781470451851 |c OnlineAusgabe |9 978-1-4704-5185-1 | ||
024 | 7 | |a 10.1090/text/053 |2 doi | |
035 | |a (ZDB-4-NLEBK)2377025 | ||
035 | |a (OCoLC)1235889918 | ||
035 | |a (DE-599)BVBBV047108303 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-91G | ||
084 | |a MAT 055 |2 stub | ||
100 | 1 | |a Marcus, Daniel A. |d 1945- |e Verfasser |0 (DE-588)1089836384 |4 aut | |
245 | 1 | 0 | |a Graph theory |b a problem oriented approach |c Daniel A. Marcus |
250 | |a Reprinted by the American Mathematical Society | ||
264 | 1 | |a Providence, Rhode Island |b MAA Press, an imprint of the American Mathematical Society |c 2020 | |
264 | 4 | |c © 2011 | |
300 | |a 1 Online-Ressource (xvi, 205 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a AMS/MAA textbooks |v vol 53 | |
490 | 0 | |a MAA textbooks | |
500 | |a Originally published by The Mathematical Association of America, 2008 (hardcover) and 2011 (softcover) | ||
520 | 3 | |a Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook with those of a problem workbook. The material is presented through a series of approximately 360 strategically placed problems with connecting text. This is supplemented by 280 additional problems that are intended to be used as homework assignments. Concepts of graph theory are introduced, developed, and reinforced by working through leading questions posed in the problems.This problem-oriented format is intended to promote active involvement by the reader while always providing clear direction. This approach figures prominently on the presentation of proofs, which become more frequent and elaborate as the book progresses. Arguments are arranged in digestible chunks and always appear along with concrete examples to keep the readers firmly grounded in their motivation. Spanning tree algorithms, Euler paths, Hamilton paths and cycles, planar graphs, independence and covering, connections and obstructions, and vertex and edge colorings make up the core of the book. Hall's Theorem, the Konig-Egervary Theorem, Dilworth's Theorem and the Hungarian algorithm to the optional assignment problem, matrices, and latin squares are also explored | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4704-5184-4 |
830 | 0 | |a AMS/MAA textbooks |v vol 53 |w (DE-604)BV047275716 |9 53 | |
912 | |a ZDB-4-NLEBK |a ZDB-138-AMSM | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032514809 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2377025 |l TUM01 |p ZDB-4-NLEBK |q TUM_Einzelkauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1090/text/053 |l TUM01 |p ZDB-138-AMSM |q TUM_Einzelkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2377025 |l UBY01 |p ZDB-4-NLEBK |q UBY01_DDA21 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182140297936896 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Marcus, Daniel A. 1945- |
author_GND | (DE-588)1089836384 |
author_facet | Marcus, Daniel A. 1945- |
author_role | aut |
author_sort | Marcus, Daniel A. 1945- |
author_variant | d a m da dam |
building | Verbundindex |
bvnumber | BV047108303 |
classification_tum | MAT 055 |
collection | ZDB-4-NLEBK ZDB-138-AMSM |
ctrlnum | (ZDB-4-NLEBK)2377025 (OCoLC)1235889918 (DE-599)BVBBV047108303 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Reprinted by the American Mathematical Society |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03477nmm a22004691cb4500</leader><controlfield tag="001">BV047108303</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240229 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210127s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470451851</subfield><subfield code="c">OnlineAusgabe</subfield><subfield code="9">978-1-4704-5185-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/text/053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-NLEBK)2377025</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235889918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047108303</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 055</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marcus, Daniel A.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089836384</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph theory</subfield><subfield code="b">a problem oriented approach</subfield><subfield code="c">Daniel A. Marcus</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprinted by the American Mathematical Society</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">MAA Press, an imprint of the American Mathematical Society</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 205 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">AMS/MAA textbooks</subfield><subfield code="v">vol 53</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">MAA textbooks</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published by The Mathematical Association of America, 2008 (hardcover) and 2011 (softcover)</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook with those of a problem workbook. The material is presented through a series of approximately 360 strategically placed problems with connecting text. This is supplemented by 280 additional problems that are intended to be used as homework assignments. Concepts of graph theory are introduced, developed, and reinforced by working through leading questions posed in the problems.This problem-oriented format is intended to promote active involvement by the reader while always providing clear direction. This approach figures prominently on the presentation of proofs, which become more frequent and elaborate as the book progresses. Arguments are arranged in digestible chunks and always appear along with concrete examples to keep the readers firmly grounded in their motivation. Spanning tree algorithms, Euler paths, Hamilton paths and cycles, planar graphs, independence and covering, connections and obstructions, and vertex and edge colorings make up the core of the book. Hall's Theorem, the Konig-Egervary Theorem, Dilworth's Theorem and the Hungarian algorithm to the optional assignment problem, matrices, and latin squares are also explored</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-5184-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">AMS/MAA textbooks</subfield><subfield code="v">vol 53</subfield><subfield code="w">(DE-604)BV047275716</subfield><subfield code="9">53</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-138-AMSM</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032514809</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2377025</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/text/053</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-138-AMSM</subfield><subfield code="q">TUM_Einzelkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2377025</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">UBY01_DDA21</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047108303 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:25:37Z |
indexdate | 2024-07-10T09:02:49Z |
institution | BVB |
isbn | 9781470451851 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032514809 |
oclc_num | 1235889918 |
open_access_boolean | |
owner | DE-706 DE-91G DE-BY-TUM |
owner_facet | DE-706 DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xvi, 205 Seiten) Illustrationen |
psigel | ZDB-4-NLEBK ZDB-138-AMSM ZDB-4-NLEBK TUM_Einzelkauf ZDB-138-AMSM TUM_Einzelkauf_2024 ZDB-4-NLEBK UBY01_DDA21 |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | MAA Press, an imprint of the American Mathematical Society |
record_format | marc |
series | AMS/MAA textbooks |
series2 | AMS/MAA textbooks MAA textbooks |
spelling | Marcus, Daniel A. 1945- Verfasser (DE-588)1089836384 aut Graph theory a problem oriented approach Daniel A. Marcus Reprinted by the American Mathematical Society Providence, Rhode Island MAA Press, an imprint of the American Mathematical Society 2020 © 2011 1 Online-Ressource (xvi, 205 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier AMS/MAA textbooks vol 53 MAA textbooks Originally published by The Mathematical Association of America, 2008 (hardcover) and 2011 (softcover) Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook with those of a problem workbook. The material is presented through a series of approximately 360 strategically placed problems with connecting text. This is supplemented by 280 additional problems that are intended to be used as homework assignments. Concepts of graph theory are introduced, developed, and reinforced by working through leading questions posed in the problems.This problem-oriented format is intended to promote active involvement by the reader while always providing clear direction. This approach figures prominently on the presentation of proofs, which become more frequent and elaborate as the book progresses. Arguments are arranged in digestible chunks and always appear along with concrete examples to keep the readers firmly grounded in their motivation. Spanning tree algorithms, Euler paths, Hamilton paths and cycles, planar graphs, independence and covering, connections and obstructions, and vertex and edge colorings make up the core of the book. Hall's Theorem, the Konig-Egervary Theorem, Dilworth's Theorem and the Hungarian algorithm to the optional assignment problem, matrices, and latin squares are also explored Graphentheorie (DE-588)4113782-6 gnd rswk-swf Graphentheorie (DE-588)4113782-6 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-4704-5184-4 AMS/MAA textbooks vol 53 (DE-604)BV047275716 53 |
spellingShingle | Marcus, Daniel A. 1945- Graph theory a problem oriented approach AMS/MAA textbooks Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4113782-6 |
title | Graph theory a problem oriented approach |
title_auth | Graph theory a problem oriented approach |
title_exact_search | Graph theory a problem oriented approach |
title_exact_search_txtP | Graph theory a problem oriented approach |
title_full | Graph theory a problem oriented approach Daniel A. Marcus |
title_fullStr | Graph theory a problem oriented approach Daniel A. Marcus |
title_full_unstemmed | Graph theory a problem oriented approach Daniel A. Marcus |
title_short | Graph theory |
title_sort | graph theory a problem oriented approach |
title_sub | a problem oriented approach |
topic | Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Graphentheorie |
volume_link | (DE-604)BV047275716 |
work_keys_str_mv | AT marcusdaniela graphtheoryaproblemorientedapproach |