Data-driven computational neuroscience: machine learning and statistical models

"Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neur...

Full description

Saved in:
Bibliographic Details
Main Authors: Bielza, Concha 1966- (Author), Larrañaga, Pedro 1958- (Author)
Format: Book
Language:English
Published: Cambridge, United Kingdom ; New York, NY Cambridge University Press 2020
Subjects:
Summary:"Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered"--
Item Description:Includes bibliographical references and index
2007
Physical Description:xviii, 689 Seiten Illustrationen, Diagramme
ISBN:9781108493703

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection!