Data-driven computational neuroscience: machine learning and statistical models
"Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neur...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY
Cambridge University Press
2020
|
Schlagworte: | |
Zusammenfassung: | "Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered"-- |
Beschreibung: | Includes bibliographical references and index 2007 |
Beschreibung: | xviii, 689 Seiten Illustrationen, Diagramme |
ISBN: | 9781108493703 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV047104011 | ||
003 | DE-604 | ||
005 | 20210503 | ||
007 | t | ||
008 | 210125s2020 xxka||| |||| 00||| eng d | ||
020 | |a 9781108493703 |c hardback |9 978-1-108-49370-3 | ||
035 | |a (OCoLC)1227261322 | ||
035 | |a (DE-599)KXP1694221938 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-11 |a DE-20 | ||
050 | 0 | |a QP357.5 | |
082 | 0 | |a 612.8 | |
084 | |a WC 7600 |0 (DE-625)148143: |2 rvk | ||
084 | |a WC 7000 |0 (DE-625)148142: |2 rvk | ||
084 | |a CM 4000 |0 (DE-625)18951: |2 rvk | ||
084 | |a CM 4400 |0 (DE-625)18955: |2 rvk | ||
084 | |a CZ 1310 |0 (DE-625)19230: |2 rvk | ||
100 | 1 | |a Bielza, Concha |d 1966- |e Verfasser |0 (DE-588)1212808150 |4 aut | |
245 | 1 | 0 | |a Data-driven computational neuroscience |b machine learning and statistical models |c Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY |b Cambridge University Press |c 2020 | |
300 | |a xviii, 689 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a 2007 | ||
520 | 3 | |a "Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered"-- | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neurowissenschaften |0 (DE-588)7555119-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
653 | 0 | |a Neurosciences / Data processing | |
653 | 0 | |a Neurosciences / Statistical methods | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 2 | |a Neurowissenschaften |0 (DE-588)7555119-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Larrañaga, Pedro |d 1958- |e Verfasser |0 (DE-588)1222979357 |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032510326 |
Datensatz im Suchindex
_version_ | 1804182132858290176 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bielza, Concha 1966- Larrañaga, Pedro 1958- |
author_GND | (DE-588)1212808150 (DE-588)1222979357 |
author_facet | Bielza, Concha 1966- Larrañaga, Pedro 1958- |
author_role | aut aut |
author_sort | Bielza, Concha 1966- |
author_variant | c b cb p l pl |
building | Verbundindex |
bvnumber | BV047104011 |
callnumber-first | Q - Science |
callnumber-label | QP357 |
callnumber-raw | QP357.5 |
callnumber-search | QP357.5 |
callnumber-sort | QP 3357.5 |
callnumber-subject | QP - Physiology |
classification_rvk | WC 7600 WC 7000 CM 4000 CM 4400 CZ 1310 |
ctrlnum | (OCoLC)1227261322 (DE-599)KXP1694221938 |
dewey-full | 612.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8 |
dewey-search | 612.8 |
dewey-sort | 3612.8 |
dewey-tens | 610 - Medicine and health |
discipline | Biologie Psychologie Medizin |
discipline_str_mv | Biologie Psychologie Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03094nam a22005051c 4500</leader><controlfield tag="001">BV047104011</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210503 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210125s2020 xxka||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108493703</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-108-49370-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227261322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1694221938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP357.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7600</subfield><subfield code="0">(DE-625)148143:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="0">(DE-625)148142:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4000</subfield><subfield code="0">(DE-625)18951:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4400</subfield><subfield code="0">(DE-625)18955:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CZ 1310</subfield><subfield code="0">(DE-625)19230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bielza, Concha</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1212808150</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven computational neuroscience</subfield><subfield code="b">machine learning and statistical models</subfield><subfield code="c">Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 689 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2007</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neurowissenschaften</subfield><subfield code="0">(DE-588)7555119-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences / Statistical methods</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Neurowissenschaften</subfield><subfield code="0">(DE-588)7555119-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Larrañaga, Pedro</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1222979357</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032510326</subfield></datafield></record></collection> |
id | DE-604.BV047104011 |
illustrated | Illustrated |
index_date | 2024-07-03T16:23:55Z |
indexdate | 2024-07-10T09:02:42Z |
institution | BVB |
isbn | 9781108493703 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032510326 |
oclc_num | 1227261322 |
open_access_boolean | |
owner | DE-11 DE-20 |
owner_facet | DE-11 DE-20 |
physical | xviii, 689 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Bielza, Concha 1966- Verfasser (DE-588)1212808150 aut Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid Cambridge, United Kingdom ; New York, NY Cambridge University Press 2020 xviii, 689 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index 2007 "Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered"-- Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Neurowissenschaften (DE-588)7555119-6 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Neurosciences / Data processing Neurosciences / Statistical methods Maschinelles Lernen (DE-588)4193754-5 s Statistik (DE-588)4056995-0 s Neurowissenschaften (DE-588)7555119-6 s DE-604 Larrañaga, Pedro 1958- Verfasser (DE-588)1222979357 aut |
spellingShingle | Bielza, Concha 1966- Larrañaga, Pedro 1958- Data-driven computational neuroscience machine learning and statistical models Maschinelles Lernen (DE-588)4193754-5 gnd Neurowissenschaften (DE-588)7555119-6 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)7555119-6 (DE-588)4056995-0 |
title | Data-driven computational neuroscience machine learning and statistical models |
title_auth | Data-driven computational neuroscience machine learning and statistical models |
title_exact_search | Data-driven computational neuroscience machine learning and statistical models |
title_exact_search_txtP | Data-driven computational neuroscience machine learning and statistical models |
title_full | Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
title_fullStr | Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
title_full_unstemmed | Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
title_short | Data-driven computational neuroscience |
title_sort | data driven computational neuroscience machine learning and statistical models |
title_sub | machine learning and statistical models |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Neurowissenschaften (DE-588)7555119-6 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Maschinelles Lernen Neurowissenschaften Statistik |
work_keys_str_mv | AT bielzaconcha datadrivencomputationalneurosciencemachinelearningandstatisticalmodels AT larranagapedro datadrivencomputationalneurosciencemachinelearningandstatisticalmodels |