Introduction to graph theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Pearson
2018
|
Ausgabe: | Second edition [2018 reissue] |
Schriftenreihe: | Pearson modern classic
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Originally published in 2001, reissued as part of Pearson's modern classic series Includes bibliographical references and indexes. - Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | xix, 588 Seiten Diagramme |
ISBN: | 9780131437371 0131437372 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047098166 | ||
003 | DE-604 | ||
005 | 20220928 | ||
007 | t | ||
008 | 210120s2018 xxu|||| |||| 00||| eng d | ||
020 | |a 9780131437371 |c : pbk |9 978-0-13-143737-1 | ||
020 | |a 0131437372 |c : pbk |9 0-13-143737-2 | ||
035 | |a (OCoLC)1197988685 | ||
035 | |a (DE-599)GBV875897592 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-19 |a DE-384 |a DE-739 |a DE-634 | ||
050 | 0 | |a QA166 | |
082 | 0 | |a 511/.5 |2 23 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a West, Douglas Brent |e Verfasser |0 (DE-588)1157982476 |4 aut | |
245 | 1 | 0 | |a Introduction to graph theory |c Douglas B. West, University of Illinois--Urbana |
250 | |a Second edition [2018 reissue] | ||
264 | 1 | |a New York, NY |b Pearson |c 2018 | |
300 | |a xix, 588 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Pearson modern classic | |
500 | |a Originally published in 2001, reissued as part of Pearson's modern classic series | ||
500 | |a Includes bibliographical references and indexes. - Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Graph theory | |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032504607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032504607 |
Datensatz im Suchindex
_version_ | 1804182122393501696 |
---|---|
adam_text | Contents Preface xi Chapter 1 Fundamental Concepts 1 1.1 What Is a Graph? 1 The Definition, 1 Graphs as Models, 3 Matrices and Isomorphism, 6 Decomposition and Special Graphs, 11 Exercises, 14 1.2 Paths, Cycles, and Trails 19 Connection in Graphs, 20 Bipartite Graphs, 24 Eulerian Circuits, 26 Exercises, 31 1.3 Vertex Degrees and Counting 34 Counting and Bijections, 35 Extremal Problems, 38 Graphic Sequences, 44 Exercises, 47 1.4 Directed Graphs Definitions and Examples, 53 Vertex Degrees, 58 Eulerian Digraphs, 60 Orientations and Tournaments, 61 Exercises, 63 53
Contents Chapter 2 Trees and Distance 67 2.1 Basic Properties 67 Properties of Trees, 68 Distance in Trees and Graphs, 70 Disjoint Spanning Trees (optional), 73 Exercises, 75 2.2 Spanning Trees and Enumeration 81 Enumeration of Trees, 81 Spanning Trees in Graphs, 83 Decomposition and Graceful Labelings, 87 Branchings and Eulerian Digraphs (optional), 89 Exercises, 92 2.3 Optimization and Trees 95 Minimum Spanning Tree, 95 Shortest Paths, 97 Trees in Computer Science (optional), 100 Exercises, 103 Chapter 3 Matchings and Factors 107 3.1 Matchings and Covers 107 Maximum Matchings, 108 Hall’s Matching Condition, 110 Min-Max Theorems, 112 Independent Sets and Covers, 113 Dominating Sets (optional), 116 Exercises, 118 3.2 Algorithms and Applications 123 Maximum Bipartite Matching, 123 Weighted Bipartite Matching, 125 Stable Matchings (optional), 130 Faster Bipartite Matching (optional), 132 Exercises, 134 3.3 Matchings in General Graphs Tutte’s 1-factor Theorem, 136 /-factors of Graphs (optional), 140 Edmonds’ Blossom Algorithm (optional), 142 Exercises, 145 136
Contents Chapter 4 Connectivity and Paths 149 4.1 Cuts and Connectivity 149 Connectivity, 149 Edge-connectivity, 152 Blocks, 155 Exercises, 158 4.2 ^-connected Graphs 161 2-connected Graphs, 161 Connectivity of Digraphs, 164 ¿-connected and ¿-edge-connected Graphs, 166 Applications of Menger’s Theorem, 170 Exercises, 172 4.3 Network Flow Problems 176 Maximum Network Flow, 176 Integral Flows, 181 Supplies and Demands (optional), 184 Exercises, 188 Chapter 5 Coloring of Graphs 191 5.1 Vertex Colorings and Upper Bounds 191 Definitions and Examples, 191 Upper Bounds, 194 Brooks’ Theorem, 197 Exercises, 199 5.2 Structure of ¿-chromatic Graphs 204 Graphs with Large Chromatic Number, 205 Extremal Problems and Turán’s Theorem 207 Color-Critical Graphs, 210 Forced Subdivisions, 212 Exercises, 214 5.3 Enumerative Aspects Counting Proper Colorings, 219 Chordal Graphs, 224 A Hint of Perfect Graphs, 226 Counting Acyclic Orientations (optional), 228 Exercises, 229 219
Contents viii Chapter 6 Planar Graphs 233 6.1 Embeddings and Euler’s Formula 233 Drawings in the Plane, 233 Dual Graphs, 236 Euler’s Formula, 241 255 Exercises, 243 6.2 Characterization of Planar Graphs 246 Preparation for Kuratowski’s Theorem, 247 Convex Embeddings, 248 Planarity Testing (optional), 252 Exercises, 255 6.3 Parameters of Planarity 257 Coloring of Planar Graphs, 257 Crossing Number, 261 Surfaces of Higher Genus (optional), 266 Exercises, 269 Chapter 7 Edges and Cycles 273 7.1 Line Graphs and Edge-coloring 273 Edge-colorings, 274 Characterization of Line Graphs (optional), 279 Exercises, 282 7.2 Hamiltonian Cycles 286 Necessary Conditions, 287 Sufficient Conditions, 288 Cycles in Directed Graphs (optional), 293 Exercises, 294 7.3 Planarity, Coloring, and Cycles Tait’s Theorem, 300 Grinberg’s Theorem, 302 Snarks (optional), 304 Flows and Cycle Covers (optional), 307 Exercises, 314 299
Contents Chapter 8 Additional Topics (optional) ix 319 8.1 Perfect Graphs The Perfect Graph Theorem, 320 Chordal Graphs Revisited, 323 Other Classes of Perfect Graphs, 328 Imperfect Graphs, 334 The Strong Perfect Graph Conjecture, 340 Exercises, 344 319 8.2 Matroids Hereditary Systems and Examples, 349 Properties of Matroids, 354 The Span Function, 358 The Dual of a Matroid, 360 Matroid Minors and Planar Graphs, 363 Matroid Intersection, 366 Matroid Union, 369 Exercises, 372 349 8.3 Ramsey Theory The Pigeonhole Principle Revisited, 378 Ramsey’s Theorem, 380 Ramsey Numbers, 383 Graph Ramsey Theory, 386 Sperner’s Lemma and Bandwidth, 388 Exercises, 392 378 8.4 More Extremal Problems Encodings of Graphs, 397 Branchings and Gossip, 404 List Coloring and Choosability, 408 Partitions Using Paths and Cycles, 413 Circumference, 416 Exercises, 422 396 8.5 Random Graphs Existence and Expectation, 426 Properties of Almost All Graphs, 430 Threshold Functions, 432 Evolution and Graph Parameters, 436 Connectivity, Cliques, and Coloring, 439 Martingales, 442 Exercises, 448 425
Contents 8.6 Eigenvalues of Graphs 452 The Characteristic Polynomial, 453 Linear Algebra of Real Symmetric Matrices, 456 Eigenvalues and Graph Parameters, 458 Eigenvalues of Regular Graphs, 460 Eigenvalues and Expanders, 463 Strongly Regular Graphs, 464 Exercises, 467 Appendix A Mathematical Background 471 Sets, 471 Quantifiers and Proofs, 475 Induction and Recurrence, 479 Functions, 483 Counting and Binomial Coefficients, 485 Relations, 489 The Pigeonhole Principle, 491 Appendix В Optimization and Complexity 493 Intractability, 493 Heuristics and Bounds, 496 NP-Completeness Proofs, 499 Exercises, 505 Appendix C Hints for Selected Exercises 507 General Discussion, 507 Supplemental Specific Hints, 508 Appendix D Glossary of Terms 515 Appendix Ę Supplemental Reading 533 Appendix F References 567 Author Index 569 Subject Index 575
|
adam_txt |
Contents Preface xi Chapter 1 Fundamental Concepts 1 1.1 What Is a Graph? 1 The Definition, 1 Graphs as Models, 3 Matrices and Isomorphism, 6 Decomposition and Special Graphs, 11 Exercises, 14 1.2 Paths, Cycles, and Trails 19 Connection in Graphs, 20 Bipartite Graphs, 24 Eulerian Circuits, 26 Exercises, 31 1.3 Vertex Degrees and Counting 34 Counting and Bijections, 35 Extremal Problems, 38 Graphic Sequences, 44 Exercises, 47 1.4 Directed Graphs Definitions and Examples, 53 Vertex Degrees, 58 Eulerian Digraphs, 60 Orientations and Tournaments, 61 Exercises, 63 53
Contents Chapter 2 Trees and Distance 67 2.1 Basic Properties 67 Properties of Trees, 68 Distance in Trees and Graphs, 70 Disjoint Spanning Trees (optional), 73 Exercises, 75 2.2 Spanning Trees and Enumeration 81 Enumeration of Trees, 81 Spanning Trees in Graphs, 83 Decomposition and Graceful Labelings, 87 Branchings and Eulerian Digraphs (optional), 89 Exercises, 92 2.3 Optimization and Trees 95 Minimum Spanning Tree, 95 Shortest Paths, 97 Trees in Computer Science (optional), 100 Exercises, 103 Chapter 3 Matchings and Factors 107 3.1 Matchings and Covers 107 Maximum Matchings, 108 Hall’s Matching Condition, 110 Min-Max Theorems, 112 Independent Sets and Covers, 113 Dominating Sets (optional), 116 Exercises, 118 3.2 Algorithms and Applications 123 Maximum Bipartite Matching, 123 Weighted Bipartite Matching, 125 Stable Matchings (optional), 130 Faster Bipartite Matching (optional), 132 Exercises, 134 3.3 Matchings in General Graphs Tutte’s 1-factor Theorem, 136 /-factors of Graphs (optional), 140 Edmonds’ Blossom Algorithm (optional), 142 Exercises, 145 136
Contents Chapter 4 Connectivity and Paths 149 4.1 Cuts and Connectivity 149 Connectivity, 149 Edge-connectivity, 152 Blocks, 155 Exercises, 158 4.2 ^-connected Graphs 161 2-connected Graphs, 161 Connectivity of Digraphs, 164 ¿-connected and ¿-edge-connected Graphs, 166 Applications of Menger’s Theorem, 170 Exercises, 172 4.3 Network Flow Problems 176 Maximum Network Flow, 176 Integral Flows, 181 Supplies and Demands (optional), 184 Exercises, 188 Chapter 5 Coloring of Graphs 191 5.1 Vertex Colorings and Upper Bounds 191 Definitions and Examples, 191 Upper Bounds, 194 Brooks’ Theorem, 197 Exercises, 199 5.2 Structure of ¿-chromatic Graphs 204 Graphs with Large Chromatic Number, 205 Extremal Problems and Turán’s Theorem 207 Color-Critical Graphs, 210 Forced Subdivisions, 212 Exercises, 214 5.3 Enumerative Aspects Counting Proper Colorings, 219 Chordal Graphs, 224 A Hint of Perfect Graphs, 226 Counting Acyclic Orientations (optional), 228 Exercises, 229 219
Contents viii Chapter 6 Planar Graphs 233 6.1 Embeddings and Euler’s Formula 233 Drawings in the Plane, 233 Dual Graphs, 236 Euler’s Formula, 241 255 Exercises, 243 6.2 Characterization of Planar Graphs 246 Preparation for Kuratowski’s Theorem, 247 Convex Embeddings, 248 Planarity Testing (optional), 252 Exercises, 255 6.3 Parameters of Planarity 257 Coloring of Planar Graphs, 257 Crossing Number, 261 Surfaces of Higher Genus (optional), 266 Exercises, 269 Chapter 7 Edges and Cycles 273 7.1 Line Graphs and Edge-coloring 273 Edge-colorings, 274 Characterization of Line Graphs (optional), 279 Exercises, 282 7.2 Hamiltonian Cycles 286 Necessary Conditions, 287 Sufficient Conditions, 288 Cycles in Directed Graphs (optional), 293 Exercises, 294 7.3 Planarity, Coloring, and Cycles Tait’s Theorem, 300 Grinberg’s Theorem, 302 Snarks (optional), 304 Flows and Cycle Covers (optional), 307 Exercises, 314 299
Contents Chapter 8 Additional Topics (optional) ix 319 8.1 Perfect Graphs The Perfect Graph Theorem, 320 Chordal Graphs Revisited, 323 Other Classes of Perfect Graphs, 328 Imperfect Graphs, 334 The Strong Perfect Graph Conjecture, 340 Exercises, 344 319 8.2 Matroids Hereditary Systems and Examples, 349 Properties of Matroids, 354 The Span Function, 358 The Dual of a Matroid, 360 Matroid Minors and Planar Graphs, 363 Matroid Intersection, 366 Matroid Union, 369 Exercises, 372 349 8.3 Ramsey Theory The Pigeonhole Principle Revisited, 378 Ramsey’s Theorem, 380 Ramsey Numbers, 383 Graph Ramsey Theory, 386 Sperner’s Lemma and Bandwidth, 388 Exercises, 392 378 8.4 More Extremal Problems Encodings of Graphs, 397 Branchings and Gossip, 404 List Coloring and Choosability, 408 Partitions Using Paths and Cycles, 413 Circumference, 416 Exercises, 422 396 8.5 Random Graphs Existence and Expectation, 426 Properties of Almost All Graphs, 430 Threshold Functions, 432 Evolution and Graph Parameters, 436 Connectivity, Cliques, and Coloring, 439 Martingales, 442 Exercises, 448 425
Contents 8.6 Eigenvalues of Graphs 452 The Characteristic Polynomial, 453 Linear Algebra of Real Symmetric Matrices, 456 Eigenvalues and Graph Parameters, 458 Eigenvalues of Regular Graphs, 460 Eigenvalues and Expanders, 463 Strongly Regular Graphs, 464 Exercises, 467 Appendix A Mathematical Background 471 Sets, 471 Quantifiers and Proofs, 475 Induction and Recurrence, 479 Functions, 483 Counting and Binomial Coefficients, 485 Relations, 489 The Pigeonhole Principle, 491 Appendix В Optimization and Complexity 493 Intractability, 493 Heuristics and Bounds, 496 NP-Completeness Proofs, 499 Exercises, 505 Appendix C Hints for Selected Exercises 507 General Discussion, 507 Supplemental Specific Hints, 508 Appendix D Glossary of Terms 515 Appendix Ę Supplemental Reading 533 Appendix F References 567 Author Index 569 Subject Index 575 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | West, Douglas Brent |
author_GND | (DE-588)1157982476 |
author_facet | West, Douglas Brent |
author_role | aut |
author_sort | West, Douglas Brent |
author_variant | d b w db dbw |
building | Verbundindex |
bvnumber | BV047098166 |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166 |
callnumber-search | QA166 |
callnumber-sort | QA 3166 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 890 |
ctrlnum | (OCoLC)1197988685 (DE-599)GBV875897592 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Second edition [2018 reissue] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01714nam a2200421 c 4500</leader><controlfield tag="001">BV047098166</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220928 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210120s2018 xxu|||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780131437371</subfield><subfield code="c">: pbk</subfield><subfield code="9">978-0-13-143737-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0131437372</subfield><subfield code="c">: pbk</subfield><subfield code="9">0-13-143737-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1197988685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV875897592</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA166</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">West, Douglas Brent</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1157982476</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to graph theory</subfield><subfield code="c">Douglas B. West, University of Illinois--Urbana</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition [2018 reissue]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Pearson</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 588 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pearson modern classic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published in 2001, reissued as part of Pearson's modern classic series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes. - Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Graph theory</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032504607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032504607</subfield></datafield></record></collection> |
id | DE-604.BV047098166 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:22:02Z |
indexdate | 2024-07-10T09:02:32Z |
institution | BVB |
isbn | 9780131437371 0131437372 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032504607 |
oclc_num | 1197988685 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-384 DE-739 DE-634 |
owner_facet | DE-19 DE-BY-UBM DE-384 DE-739 DE-634 |
physical | xix, 588 Seiten Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Pearson |
record_format | marc |
series2 | Pearson modern classic |
spelling | West, Douglas Brent Verfasser (DE-588)1157982476 aut Introduction to graph theory Douglas B. West, University of Illinois--Urbana Second edition [2018 reissue] New York, NY Pearson 2018 xix, 588 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Pearson modern classic Originally published in 2001, reissued as part of Pearson's modern classic series Includes bibliographical references and indexes. - Hier auch später erschienene, unveränderte Nachdrucke Graphentheorie (DE-588)4113782-6 gnd rswk-swf Graph theory Graphentheorie (DE-588)4113782-6 s DE-604 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032504607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | West, Douglas Brent Introduction to graph theory Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4113782-6 |
title | Introduction to graph theory |
title_auth | Introduction to graph theory |
title_exact_search | Introduction to graph theory |
title_exact_search_txtP | Introduction to graph theory |
title_full | Introduction to graph theory Douglas B. West, University of Illinois--Urbana |
title_fullStr | Introduction to graph theory Douglas B. West, University of Illinois--Urbana |
title_full_unstemmed | Introduction to graph theory Douglas B. West, University of Illinois--Urbana |
title_short | Introduction to graph theory |
title_sort | introduction to graph theory |
topic | Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Graphentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032504607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT westdouglasbrent introductiontographtheory |