Numerical study on early fllame kernel development in spark ignition engines:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Düren
Shaker Verlag
2020
|
Schriftenreihe: | Berichte aus der Energietechnik
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xv, 290 Seiten Illustrationen, Diagramme |
ISBN: | 9783844075854 3844075852 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047068301 | ||
003 | DE-604 | ||
005 | 20210415 | ||
007 | t | ||
008 | 201217s2020 gw a||| m||| 00||| eng d | ||
015 | |a 20,N35 |2 dnb | ||
016 | 7 | |a 1216183074 |2 DE-101 | |
020 | |a 9783844075854 |c : EUR 49.80 (DE), EUR 49.80 (AT), CHF 62.30 (freier Preis) |9 978-3-8440-7585-4 | ||
020 | |a 3844075852 |9 3-8440-7585-2 | ||
024 | 3 | |a 9783844075854 | |
035 | |a (OCoLC)1226356963 | ||
035 | |a (DE-599)DNB1216183074 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-83 | ||
084 | |a ZL 5530 |0 (DE-625)159591: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Falkenstein, Tobias |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical study on early fllame kernel development in spark ignition engines |c Tobias Falkenstein |
264 | 1 | |a Düren |b Shaker Verlag |c 2020 | |
300 | |a xv, 290 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Berichte aus der Energietechnik | |
502 | |b Dissertation |c RWTH Aachen University |d 2020 | ||
650 | 0 | 7 | |a LES |g Strömung |0 (DE-588)4315616-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Direkte numerische Simulation |0 (DE-588)4494453-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Flamme |0 (DE-588)4154542-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ottomotor |0 (DE-588)4044196-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verbrennung |0 (DE-588)4062656-8 |2 gnd |9 rswk-swf |
653 | |a Reacting Flows | ||
653 | |a Large-Eddy Simulation | ||
653 | |a Flame/Turbulence Interactions | ||
653 | |a Premixed Combustion | ||
653 | |a Cycle-to-Cycle Variations | ||
653 | |a Direct Numerical Simulation | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Ottomotor |0 (DE-588)4044196-9 |D s |
689 | 0 | 1 | |a Verbrennung |0 (DE-588)4062656-8 |D s |
689 | 0 | 2 | |a Flamme |0 (DE-588)4154542-4 |D s |
689 | 0 | 3 | |a LES |g Strömung |0 (DE-588)4315616-2 |D s |
689 | 0 | 4 | |a Direkte numerische Simulation |0 (DE-588)4494453-6 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Shaker Verlag |0 (DE-588)1064118135 |4 pbl | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032475348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032475348 |
Datensatz im Suchindex
_version_ | 1804182069428879360 |
---|---|
adam_text | CONTENTS
ABSTRACT
III
ZUSAMMENFASSUNG
V
PUBLICATION
LIST
VII
ACKNOWLEDGEMENT
IX
1.
INTRODUCTION
1
2.
DEVELOPMENT
OF
AN
LES
FRAMEWORK
FOR
ACCURATE
COMPU
TATIONS
OF
INTERNAL
COMBUSTION
ENGINE
FLOWS
5
2.1.
LES
GOVERNING
EQUATIONS
........................................................
5
2.2.
METHODS
AND
MODELS
FOR
LES
OF
ENGINE
COLD
FLOW
...............
7
2.2.1.
NUMERICAL
DISCRETIZATION
SCHEMES
OF
THE
EXISTING
CODE
7
2.2.2.
IMMERSED
BOUNDARY
METHOD
......................................
8
2.2.3.
WALL
MODEL
...................................................................
10
2.2.4.
NAVIER-STOKES
CHARACTERISTIC
BOUNDARY
CONDITIONS
.
.
11
2.2.5.
OVERSET
GRID
METHOD
..................................................
21
2.3.
CHAPTER
SUMMARY
...................................................................
28
3.
VALIDATION
OF
THE
LES
FRAMEWORK
FOR
ENGINE
PORT
FLOWS
31
3.1.
ENGINE
SPECIFICATION
.................................................................
31
3.2.
EXPERIMENTAL
PROCEDURE
...........................................................
31
3.3.
SIMULATION
SETUP
......................................................................
33
3.3.1.
SFS
MODELS
...................................................................
35
3.3.2.
PARALLEL
PERFORMANCE
.....................................................
35
3.3.3.
CONVERGENCE
OF
STATISTICS
............................................
36
3.4.
OVERALL
FLOW
FIELD
CHARACTERIZATION
......................................
38
3.5.
PREDICTION
OF
INTEGRAL
FLOW
QUANTITIES
...................................
40
3.6.
PREDICTION
OF
THE
LOCAL
VELOCITY
FIELD
...................................
42
3.7.
ROBUSTNESS
OF
THE
LES
APPROACH
............................................
47
3.7.1.
SFS
MODEL
AND
GRID
RESOLUTION
................................
47
3.8.
MODEL
SENSITIVITIES
...................................................................
53
3.8.1.
EFFECT
OF
THE
WALL
MODEL
...............................................
55
CONTENTS
3.8.2.
COMBINED
EFFECTS
OF
THE
ENHANCED
WALL
TREATMENT
.
.
55
3.9.
CHAPTER
SUMMARY
...................................................................
56
4.
LES
MODELING
STUDY
ON
CYCLE-TO-CYCLE
VARIATIONS
IN
A
DISI
ENGINE
59
4.1.
MOTIVATION
................................................................................
59
4.2.
COMBUSTION
MODELING
..............................................................
61
4.2.1.
COUPLED
FLAME
FRONT/PROGRESS
VARIABLE
EQUATION
MODEL
61
4.2.2.
FLAINELET
LIBRARY
...........................................................
63
4.2.3.
SPARK
AND
EARLY
FLAME
KERNEL
MODELS
......................
64
4.3.
LES
OF
DISI
ENGINE
COMBUSTION
............................................
65
4.3.1.
ENGINE
SPECIFICATIONS
.....................................................
65
4.3.2.
OPERATING
CONDITIONS
..................................................
65
4.3.3.
SIMULATION
APPROACH
.....................................................
65
4.3.4.
CYCLE-TO-CYCLE
VARIATIONS
............................................
66
4.3.5.
FUEL/AIR
DISTRIBUTION
..................................................
67
4.4.
LES
OF
A
SPHERICALLY
EXPANDING
TURBULENT
FLAME
..................
71
4.5.
CHAPTER
SUMMARY
....................................................................
78
5.
LES
OF
THE
TU
DARMSTADT
OPTICAL
ENGINE
USING
CARTESIAN
OVERSET
GRIDS
79
5.1.
ENGINE
FLOWBENCH
MEASUREMENTS
............................................
79
5.1.1.
ENGINE
SPECIFICATION
.....................................................
79
5.1.2.
FLOW
CONFIGURATION
........................................................
79
5.2.
LES
OF
THE
ENGINE
FLOWBENCH
EXPERIMENT
.............................
82
5.2.1.
FLOWBENCH
LES
SETUP
..................................................
82
5.2.2.
LES
SOLUTION
QUALITY
..................................................
82
5.2.3.
INSTANTANEOUS
LES
RESULTS
.........................................
87
5.2.4.
COMPARISON
TO
PIV
DATA
............................................
88
5.2.5.
MEAN
TUMBLE
VORTEX
FORMATION
................................
91
5.2.6.
COMPARISON
TO
STATIC
WALL
PRESSURE
MEASUREMENTS
.
.
94
5.2.7.
ANALYSIS
OF
INTAKE
JET
DYNAMICS
................................
94
5.3.
LES
OF
ONE
REACTIVE
ENGINE
CYCLE
WITH
LOCAL
MESH
REFINEMENT
98
5.4.
CHAPTER
SUMMARY
....................................................................
102
6.
DNS
OF
EARLY
FLAME
KERNEL
DEVELOPMENT
UNDER
ENGINE
CONDITIONS
105
6.1.
PREMIXED
FLAME
KERNEL/TURBULENCE
INTERACTIONS
AND
OVERALL
ANALYTICAL
APPROACH
.................................................................
106
XII
CONTENTS
6.2.
SUMMARY
OF
THE
DNS
DATABASE
...............................................
108
6.2.1.
PHYSICAL
CONFIGURATION
..................................................
108
6.2.2.
FLAME
GEOMETRY
VARIATION
.........................................
110
6.3.
DNS
METHODS
AND
MODELS
........................................................
113
6.3.1.
DNS
SYSTEM
OF
EQUATIONS
............................................
114
6.3.2.
LAMINAR
REFERENCE
FLAME
CALCULATIONS
.......................
117
6.3.3.
REACTION
MECHANISM
.....................................................
117
6.3.4.
NUMERICAL
DISCRETIZATION
...............................................
119
6.3.5.
GENERATION
OF
THE
INITIAL
TURBULENT
FLOW
FIELD
....
120
6.3.6.
FLAME
INITIALIZATION
.....................................................
123
6.4.
ENGINE
RELEVANCE
OF
THE
DNS
SETUP
......................................
125
6.5.
CHAPTER
SUMMARY
...................................................................
126
7.
ANALYSIS
OF
TURBULENCE
EFFECTS
ON
THE
GLOBAL
HEAT
RELEASE
RATE
OF
FLAME
KERNELS
IN
THE
UNITY-LEWIS-NUMBER
LIMIT
127
7.1.
MATHEMATICAL
FORMULATION:
KEY
QUANTITIES
OF
INTEREST
....
128
7.2.
ANALYSIS
OF
THE
GLOBAL
HEAT
RELEASE
RATE
.............................
130
7.2.1.
MEAN
FLAME
DISPLACEMENT
SPEED
EVOLUTION
...............
131
7.2.2.
EVOLUTION
OF
FLAME
SURFACE
AREA
................................
136
7.3.
CHAPTER
SUMMARY
...................................................................
141
8.
ANALYSIS
OF
TURBULENCE
EFFECTS
ON
FLAME
KERNEL
TOPOLOGY
AND
FLAME
FRONT
GEOMETRY
IN
THE
UNITY-LEWIS-NUMBER
LIMIT
145
8.1.
MATHEMATICAL
RELATION
BETWEEN
THE
TOTAL
FLAME
SURFACE
AREA
AND
FLAME
CURVATURE
STATISTICS
...............................................
146
8.2.
FLAME
KERNEL
TOPOLOGY
EVOLUTION
............................................
149
8.2.1.
EARLY
FLAME
KERNEL
DEFORMATION
................................
151
8.3.
FLAME
FRONT
GEOMETRY
EVOLUTION
............................................
154
8.3.1.
VARIANCE
OF
THE
CURVATURE
DISTRIBUTION
.......................
154
8.3.2.
MEAN
CURVATURE
TRANSPORT
.........................................
156
8.3.3.
SKEWNESS
OF
THE
MEAN
CURVATURE
DISTRIBUTION
............
164
8.4.
LENGTH-SCALE-DEPENDENT
FLAME
FRONT/FLOW
FIELD
ALIGNMENT
.
165
8.5.
RELEVANCE
AND
IMPLICATIONS
FOR
ENGINE
COMBUSTION
AND
MODELING
169
8.6.
CHAPTER
SUMMARY
...................................................................
171
9.
THE
ROLE
OF
DIFFERENTIAL
DIFFUSION
DURING
EARLY
FLAME
KER
NEL
DEVELOPMENT:
ANALYSIS
OF
THE
HEAT-RE
LEASE-RATE
RE
SPONSE
173
9.1.
MOTIVATION
..............................................................................
174
XIII
CONTENTS
9.2.
ANALYTICAL
APPROACH:
DIFFERENTIAL
DIFFUSION
EFFECTS
ON
FLAME
KERNEL
DEVELOPMENT
IN
SI
ENGINES
.........................................
176
9.3.
GLOBAL
HEAT
RELEASE
RATE
EVOLUTION
......................................
179
9.4.
LOCAL
HEAT
RELEASE
RATE
VARIATIONS
.........................................
182
9.5.
CHAPTER
SUMMARY
....................................................................
193
10.
THE
ROLE
OF
DIFFERENTIAL
DIFFUSION
DURING
EARLY
FLAME
KER
NEL
DEVELOPMENT:
EFFECT
OF
FLAME
STRUCTURE
AND
GEOMETRY
195
10.1.
MOTIVATION
................................................................................
195
10.2.
MATHEMATICAL
FORMULATION:
DIFFERENTIAL
DIFFUSION
EFFECTS
IN
THE
ENTHALPY
EQUATION
....................................................................
197
10.3.
COMBINED
EFFECT
OF
FLAME
GEOMETRY
AND
STRUCTURE
..................
204
10.4.
DEPENDENCE
OF
(/I,
/ ,
1
H
)
ON
LOCAL
VARIATIONS
IN
FLAME
STRUC
TURE
FOR
A
GIVEN
CURVATURE
................................................
210
10.4.1.
THE
ROLE
OF
HYDRODYNAMIC
STRAIN
IN
THE
LIMIT
OF
ZERO
CURVATURE
.......................................................................
213
10.5.
CHAPTER
SUMMARY
....................................................................
218
11.
SUMMARY
AND
CONCLUSIONS
221
A.
ENGINE
LES
SUPPLEMENTARY
MATERIAL
224
A.
L.
TU
DARMSTADT
ENGINE
FLOWBENCH
MEASUREMENT
SPECIFICATIONS
224
B.
DNS
DATABASE
SUPPLEMENTARY
MATERIAL
228
B.
L.
DNS
NUMERICAL
ACCURACY
........................................................
228
B.2.
PROGRESS
VARIABLE
....................................................................
231
B.3.
EXCESS
TEMPERATURE
INTRODUCED
BY
FLAME
KERNEL
IGNITION
.
.
232
B.4.
FLOW
FIELD
AHEAD
OF
THE
FLAMES
...............................................
233
B.5.
DISCRETE
SPLITTING
OF
THE
DIFFUSION
TERM
................................
233
B.6.
DNS
POST-PROCESSING
UNCERTAINTY
............................................
235
B.
7.
PARALLEL
PERFORMANCE
OF
THE
DNS
CODE
...................................
235
C.
SUPPLEMENTARY
FLAME
KERNEL
DNS
RESULTS
237
C.
L.
FLAME
KERNEL
IMAGES
(LE
=
1)
...............................................
237
C.2.
EVALUATION
OF
THE
FLAME
SURFACE
AREA
BALANCE
EQUATION
TERMS
(LE
=
1)
......................................................................................
237
C.3.
MEAN
CURVATURE
EVOLUTION
(LE
=
1)
......................................
242
C.3.1.
ALIGNMENT
OF
CURVATURE
AND
STRAIN
PRINCIPAL
AXES
.
.
243
C.3.2.
SKEWNESS
OF
THE
MEAN
CURVATURE
DISTRIBUTION:
LOCAL
FLAME-SEGMENT
ANALYSIS
...............................................
243
XIV
CONTENTS
C.4.
LENGTH-SCALE-DEPENDENT
FLAME
FRONT/FLOW
FIELD
ALIGNMENT
(LE
=
1)
............................................................................
244
C.4.1.
FLAME
FRONT
ALIGNMENT
WITH
THE
UNFILTERED
FLOW
FIELD
244
C.4.2.
VISUALIZATION
OF
THE
FLAME
FRONT
ALIGNMENT
WITH
THE
FILTERED
FLOW
FIELD
........................................................
245
C.5.
FLAME
IMAGES
(LE
1)
..............................................................
247
C.6.
LOCAL
HEAT
RELEASE
RATE
VARIATIONS
(LE
1)
.......................
247
C.7.
CORRELATION
BETWEEN
MARKER
SPECIES
AND
MIXTURE
STATE
PARAM
ETERS
..................................................................................
253
C.8.
ASSESSMENT
OF
A
MEAN-CURVATURE-BASED
MODELING
APPROACH
(LE
1)
.....................................................................................
254
C.9.
EFFECT
OF
STRAIN
ON
THE
FLAME
STRUCTURE
OF
TURBULENT
AND
LAMINAR
FLAMES
(LE
1)
........................................................
255
C.
10.
CORRELATION
BETWEEN
THE
HEAT
RELEASE
RATE
AND
THE
LOCAL
MIXTURE
STATE
(LE
1)
..............................................................
256
C.
11.
EFFECTS
OF
FLAME
KERNEL/TURBULENCE
INTERACTIONS
ON
THE
CUR
VATURE
DISTRIBUTION
(LE
1)
............................................
259
C.
12.
THE
ROLE
OF
HYDRODYNAMIC
STRAIN
IN
THE
LIMIT
OF
ZERO
CURVA
TURE
(LE
1)
....................................................................
259
BIBLIOGRAPHY
261
XV
|
adam_txt |
CONTENTS
ABSTRACT
III
ZUSAMMENFASSUNG
V
PUBLICATION
LIST
VII
ACKNOWLEDGEMENT
IX
1.
INTRODUCTION
1
2.
DEVELOPMENT
OF
AN
LES
FRAMEWORK
FOR
ACCURATE
COMPU
TATIONS
OF
INTERNAL
COMBUSTION
ENGINE
FLOWS
5
2.1.
LES
GOVERNING
EQUATIONS
.
5
2.2.
METHODS
AND
MODELS
FOR
LES
OF
ENGINE
COLD
FLOW
.
7
2.2.1.
NUMERICAL
DISCRETIZATION
SCHEMES
OF
THE
EXISTING
CODE
7
2.2.2.
IMMERSED
BOUNDARY
METHOD
.
8
2.2.3.
WALL
MODEL
.
10
2.2.4.
NAVIER-STOKES
CHARACTERISTIC
BOUNDARY
CONDITIONS
.
.
11
2.2.5.
OVERSET
GRID
METHOD
.
21
2.3.
CHAPTER
SUMMARY
.
28
3.
VALIDATION
OF
THE
LES
FRAMEWORK
FOR
ENGINE
PORT
FLOWS
31
3.1.
ENGINE
SPECIFICATION
.
31
3.2.
EXPERIMENTAL
PROCEDURE
.
31
3.3.
SIMULATION
SETUP
.
33
3.3.1.
SFS
MODELS
.
35
3.3.2.
PARALLEL
PERFORMANCE
.
35
3.3.3.
CONVERGENCE
OF
STATISTICS
.
36
3.4.
OVERALL
FLOW
FIELD
CHARACTERIZATION
.
38
3.5.
PREDICTION
OF
INTEGRAL
FLOW
QUANTITIES
.
40
3.6.
PREDICTION
OF
THE
LOCAL
VELOCITY
FIELD
.
42
3.7.
ROBUSTNESS
OF
THE
LES
APPROACH
.
47
3.7.1.
SFS
MODEL
AND
GRID
RESOLUTION
.
47
3.8.
MODEL
SENSITIVITIES
.
53
3.8.1.
EFFECT
OF
THE
WALL
MODEL
.
55
CONTENTS
3.8.2.
COMBINED
EFFECTS
OF
THE
ENHANCED
WALL
TREATMENT
.
.
55
3.9.
CHAPTER
SUMMARY
.
56
4.
LES
MODELING
STUDY
ON
CYCLE-TO-CYCLE
VARIATIONS
IN
A
DISI
ENGINE
59
4.1.
MOTIVATION
.
59
4.2.
COMBUSTION
MODELING
.
61
4.2.1.
COUPLED
FLAME
FRONT/PROGRESS
VARIABLE
EQUATION
MODEL
61
4.2.2.
FLAINELET
LIBRARY
.
63
4.2.3.
SPARK
AND
EARLY
FLAME
KERNEL
MODELS
.
64
4.3.
LES
OF
DISI
ENGINE
COMBUSTION
.
65
4.3.1.
ENGINE
SPECIFICATIONS
.
65
4.3.2.
OPERATING
CONDITIONS
.
65
4.3.3.
SIMULATION
APPROACH
.
65
4.3.4.
CYCLE-TO-CYCLE
VARIATIONS
.
66
4.3.5.
FUEL/AIR
DISTRIBUTION
.
67
4.4.
LES
OF
A
SPHERICALLY
EXPANDING
TURBULENT
FLAME
.
71
4.5.
CHAPTER
SUMMARY
.
78
5.
LES
OF
THE
TU
DARMSTADT
OPTICAL
ENGINE
USING
CARTESIAN
OVERSET
GRIDS
79
5.1.
ENGINE
FLOWBENCH
MEASUREMENTS
.
79
5.1.1.
ENGINE
SPECIFICATION
.
79
5.1.2.
FLOW
CONFIGURATION
.
79
5.2.
LES
OF
THE
ENGINE
FLOWBENCH
EXPERIMENT
.
82
5.2.1.
FLOWBENCH
LES
SETUP
.
82
5.2.2.
LES
SOLUTION
QUALITY
.
82
5.2.3.
INSTANTANEOUS
LES
RESULTS
.
87
5.2.4.
COMPARISON
TO
PIV
DATA
.
88
5.2.5.
MEAN
TUMBLE
VORTEX
FORMATION
.
91
5.2.6.
COMPARISON
TO
STATIC
WALL
PRESSURE
MEASUREMENTS
.
.
94
5.2.7.
ANALYSIS
OF
INTAKE
JET
DYNAMICS
.
94
5.3.
LES
OF
ONE
REACTIVE
ENGINE
CYCLE
WITH
LOCAL
MESH
REFINEMENT
98
5.4.
CHAPTER
SUMMARY
.
102
6.
DNS
OF
EARLY
FLAME
KERNEL
DEVELOPMENT
UNDER
ENGINE
CONDITIONS
105
6.1.
PREMIXED
FLAME
KERNEL/TURBULENCE
INTERACTIONS
AND
OVERALL
ANALYTICAL
APPROACH
.
106
XII
CONTENTS
6.2.
SUMMARY
OF
THE
DNS
DATABASE
.
108
6.2.1.
PHYSICAL
CONFIGURATION
.
108
6.2.2.
FLAME
GEOMETRY
VARIATION
.
110
6.3.
DNS
METHODS
AND
MODELS
.
113
6.3.1.
DNS
SYSTEM
OF
EQUATIONS
.
114
6.3.2.
LAMINAR
REFERENCE
FLAME
CALCULATIONS
.
117
6.3.3.
REACTION
MECHANISM
.
117
6.3.4.
NUMERICAL
DISCRETIZATION
.
119
6.3.5.
GENERATION
OF
THE
INITIAL
TURBULENT
FLOW
FIELD
.
120
6.3.6.
FLAME
INITIALIZATION
.
123
6.4.
ENGINE
RELEVANCE
OF
THE
DNS
SETUP
.
125
6.5.
CHAPTER
SUMMARY
.
126
7.
ANALYSIS
OF
TURBULENCE
EFFECTS
ON
THE
GLOBAL
HEAT
RELEASE
RATE
OF
FLAME
KERNELS
IN
THE
UNITY-LEWIS-NUMBER
LIMIT
127
7.1.
MATHEMATICAL
FORMULATION:
KEY
QUANTITIES
OF
INTEREST
.
128
7.2.
ANALYSIS
OF
THE
GLOBAL
HEAT
RELEASE
RATE
.
130
7.2.1.
MEAN
FLAME
DISPLACEMENT
SPEED
EVOLUTION
.
131
7.2.2.
EVOLUTION
OF
FLAME
SURFACE
AREA
.
136
7.3.
CHAPTER
SUMMARY
.
141
8.
ANALYSIS
OF
TURBULENCE
EFFECTS
ON
FLAME
KERNEL
TOPOLOGY
AND
FLAME
FRONT
GEOMETRY
IN
THE
UNITY-LEWIS-NUMBER
LIMIT
145
8.1.
MATHEMATICAL
RELATION
BETWEEN
THE
TOTAL
FLAME
SURFACE
AREA
AND
FLAME
CURVATURE
STATISTICS
.
146
8.2.
FLAME
KERNEL
TOPOLOGY
EVOLUTION
.
149
8.2.1.
EARLY
FLAME
KERNEL
DEFORMATION
.
151
8.3.
FLAME
FRONT
GEOMETRY
EVOLUTION
.
154
8.3.1.
VARIANCE
OF
THE
CURVATURE
DISTRIBUTION
.
154
8.3.2.
MEAN
CURVATURE
TRANSPORT
.
156
8.3.3.
SKEWNESS
OF
THE
MEAN
CURVATURE
DISTRIBUTION
.
164
8.4.
LENGTH-SCALE-DEPENDENT
FLAME
FRONT/FLOW
FIELD
ALIGNMENT
.
165
8.5.
RELEVANCE
AND
IMPLICATIONS
FOR
ENGINE
COMBUSTION
AND
MODELING
169
8.6.
CHAPTER
SUMMARY
.
171
9.
THE
ROLE
OF
DIFFERENTIAL
DIFFUSION
DURING
EARLY
FLAME
KER
NEL
DEVELOPMENT:
ANALYSIS
OF
THE
HEAT-RE
LEASE-RATE
RE
SPONSE
173
9.1.
MOTIVATION
.
174
XIII
CONTENTS
9.2.
ANALYTICAL
APPROACH:
DIFFERENTIAL
DIFFUSION
EFFECTS
ON
FLAME
KERNEL
DEVELOPMENT
IN
SI
ENGINES
.
176
9.3.
GLOBAL
HEAT
RELEASE
RATE
EVOLUTION
.
179
9.4.
LOCAL
HEAT
RELEASE
RATE
VARIATIONS
.
182
9.5.
CHAPTER
SUMMARY
.
193
10.
THE
ROLE
OF
DIFFERENTIAL
DIFFUSION
DURING
EARLY
FLAME
KER
NEL
DEVELOPMENT:
EFFECT
OF
FLAME
STRUCTURE
AND
GEOMETRY
195
10.1.
MOTIVATION
.
195
10.2.
MATHEMATICAL
FORMULATION:
DIFFERENTIAL
DIFFUSION
EFFECTS
IN
THE
ENTHALPY
EQUATION
.
197
10.3.
COMBINED
EFFECT
OF
FLAME
GEOMETRY
AND
STRUCTURE
.
204
10.4.
DEPENDENCE
OF
(/I,
/ ,
1
H
)
ON
LOCAL
VARIATIONS
IN
FLAME
STRUC
TURE
FOR
A
GIVEN
CURVATURE
.
210
10.4.1.
THE
ROLE
OF
HYDRODYNAMIC
STRAIN
IN
THE
LIMIT
OF
ZERO
CURVATURE
.
213
10.5.
CHAPTER
SUMMARY
.
218
11.
SUMMARY
AND
CONCLUSIONS
221
A.
ENGINE
LES
SUPPLEMENTARY
MATERIAL
224
A.
L.
TU
DARMSTADT
ENGINE
FLOWBENCH
MEASUREMENT
SPECIFICATIONS
224
B.
DNS
DATABASE
SUPPLEMENTARY
MATERIAL
228
B.
L.
DNS
NUMERICAL
ACCURACY
.
228
B.2.
PROGRESS
VARIABLE
.
231
B.3.
EXCESS
TEMPERATURE
INTRODUCED
BY
FLAME
KERNEL
IGNITION
.
.
232
B.4.
FLOW
FIELD
AHEAD
OF
THE
FLAMES
.
233
B.5.
DISCRETE
SPLITTING
OF
THE
DIFFUSION
TERM
.
233
B.6.
DNS
POST-PROCESSING
UNCERTAINTY
.
235
B.
7.
PARALLEL
PERFORMANCE
OF
THE
DNS
CODE
.
235
C.
SUPPLEMENTARY
FLAME
KERNEL
DNS
RESULTS
237
C.
L.
FLAME
KERNEL
IMAGES
(LE
=
1)
.
237
C.2.
EVALUATION
OF
THE
FLAME
SURFACE
AREA
BALANCE
EQUATION
TERMS
(LE
=
1)
.
237
C.3.
MEAN
CURVATURE
EVOLUTION
(LE
=
1)
.
242
C.3.1.
ALIGNMENT
OF
CURVATURE
AND
STRAIN
PRINCIPAL
AXES
.
.
243
C.3.2.
SKEWNESS
OF
THE
MEAN
CURVATURE
DISTRIBUTION:
LOCAL
FLAME-SEGMENT
ANALYSIS
.
243
XIV
CONTENTS
C.4.
LENGTH-SCALE-DEPENDENT
FLAME
FRONT/FLOW
FIELD
ALIGNMENT
(LE
=
1)
.
244
C.4.1.
FLAME
FRONT
ALIGNMENT
WITH
THE
UNFILTERED
FLOW
FIELD
244
C.4.2.
VISUALIZATION
OF
THE
FLAME
FRONT
ALIGNMENT
WITH
THE
FILTERED
FLOW
FIELD
.
245
C.5.
FLAME
IMAGES
(LE
1)
.
247
C.6.
LOCAL
HEAT
RELEASE
RATE
VARIATIONS
(LE
1)
.
247
C.7.
CORRELATION
BETWEEN
MARKER
SPECIES
AND
MIXTURE
STATE
PARAM
ETERS
.
253
C.8.
ASSESSMENT
OF
A
MEAN-CURVATURE-BASED
MODELING
APPROACH
(LE
1)
.
254
C.9.
EFFECT
OF
STRAIN
ON
THE
FLAME
STRUCTURE
OF
TURBULENT
AND
LAMINAR
FLAMES
(LE
1)
.
255
C.
10.
CORRELATION
BETWEEN
THE
HEAT
RELEASE
RATE
AND
THE
LOCAL
MIXTURE
STATE
(LE
1)
.
256
C.
11.
EFFECTS
OF
FLAME
KERNEL/TURBULENCE
INTERACTIONS
ON
THE
CUR
VATURE
DISTRIBUTION
(LE
1)
.
259
C.
12.
THE
ROLE
OF
HYDRODYNAMIC
STRAIN
IN
THE
LIMIT
OF
ZERO
CURVA
TURE
(LE
1)
.
259
BIBLIOGRAPHY
261
XV |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Falkenstein, Tobias |
author_facet | Falkenstein, Tobias |
author_role | aut |
author_sort | Falkenstein, Tobias |
author_variant | t f tf |
building | Verbundindex |
bvnumber | BV047068301 |
classification_rvk | ZL 5530 |
ctrlnum | (OCoLC)1226356963 (DE-599)DNB1216183074 |
discipline | Maschinenbau / Maschinenwesen |
discipline_str_mv | Maschinenbau / Maschinenwesen |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02388nam a22006018c 4500</leader><controlfield tag="001">BV047068301</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210415 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">201217s2020 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N35</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1216183074</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783844075854</subfield><subfield code="c">: EUR 49.80 (DE), EUR 49.80 (AT), CHF 62.30 (freier Preis)</subfield><subfield code="9">978-3-8440-7585-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3844075852</subfield><subfield code="9">3-8440-7585-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783844075854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1226356963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1216183074</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZL 5530</subfield><subfield code="0">(DE-625)159591:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Falkenstein, Tobias</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical study on early fllame kernel development in spark ignition engines</subfield><subfield code="c">Tobias Falkenstein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düren</subfield><subfield code="b">Shaker Verlag</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 290 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Berichte aus der Energietechnik</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">RWTH Aachen University</subfield><subfield code="d">2020</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">LES</subfield><subfield code="g">Strömung</subfield><subfield code="0">(DE-588)4315616-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Direkte numerische Simulation</subfield><subfield code="0">(DE-588)4494453-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flamme</subfield><subfield code="0">(DE-588)4154542-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ottomotor</subfield><subfield code="0">(DE-588)4044196-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Reacting Flows</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Large-Eddy Simulation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Flame/Turbulence Interactions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Premixed Combustion</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cycle-to-Cycle Variations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Direct Numerical Simulation</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ottomotor</subfield><subfield code="0">(DE-588)4044196-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Flamme</subfield><subfield code="0">(DE-588)4154542-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">LES</subfield><subfield code="g">Strömung</subfield><subfield code="0">(DE-588)4315616-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Direkte numerische Simulation</subfield><subfield code="0">(DE-588)4494453-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Shaker Verlag</subfield><subfield code="0">(DE-588)1064118135</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032475348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032475348</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047068301 |
illustrated | Illustrated |
index_date | 2024-07-03T16:13:15Z |
indexdate | 2024-07-10T09:01:41Z |
institution | BVB |
institution_GND | (DE-588)1064118135 |
isbn | 9783844075854 3844075852 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032475348 |
oclc_num | 1226356963 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xv, 290 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Shaker Verlag |
record_format | marc |
series2 | Berichte aus der Energietechnik |
spelling | Falkenstein, Tobias Verfasser aut Numerical study on early fllame kernel development in spark ignition engines Tobias Falkenstein Düren Shaker Verlag 2020 xv, 290 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Berichte aus der Energietechnik Dissertation RWTH Aachen University 2020 LES Strömung (DE-588)4315616-2 gnd rswk-swf Direkte numerische Simulation (DE-588)4494453-6 gnd rswk-swf Flamme (DE-588)4154542-4 gnd rswk-swf Ottomotor (DE-588)4044196-9 gnd rswk-swf Verbrennung (DE-588)4062656-8 gnd rswk-swf Reacting Flows Large-Eddy Simulation Flame/Turbulence Interactions Premixed Combustion Cycle-to-Cycle Variations Direct Numerical Simulation (DE-588)4113937-9 Hochschulschrift gnd-content Ottomotor (DE-588)4044196-9 s Verbrennung (DE-588)4062656-8 s Flamme (DE-588)4154542-4 s LES Strömung (DE-588)4315616-2 s Direkte numerische Simulation (DE-588)4494453-6 s DE-604 Shaker Verlag (DE-588)1064118135 pbl DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032475348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Falkenstein, Tobias Numerical study on early fllame kernel development in spark ignition engines LES Strömung (DE-588)4315616-2 gnd Direkte numerische Simulation (DE-588)4494453-6 gnd Flamme (DE-588)4154542-4 gnd Ottomotor (DE-588)4044196-9 gnd Verbrennung (DE-588)4062656-8 gnd |
subject_GND | (DE-588)4315616-2 (DE-588)4494453-6 (DE-588)4154542-4 (DE-588)4044196-9 (DE-588)4062656-8 (DE-588)4113937-9 |
title | Numerical study on early fllame kernel development in spark ignition engines |
title_auth | Numerical study on early fllame kernel development in spark ignition engines |
title_exact_search | Numerical study on early fllame kernel development in spark ignition engines |
title_exact_search_txtP | Numerical study on early fllame kernel development in spark ignition engines |
title_full | Numerical study on early fllame kernel development in spark ignition engines Tobias Falkenstein |
title_fullStr | Numerical study on early fllame kernel development in spark ignition engines Tobias Falkenstein |
title_full_unstemmed | Numerical study on early fllame kernel development in spark ignition engines Tobias Falkenstein |
title_short | Numerical study on early fllame kernel development in spark ignition engines |
title_sort | numerical study on early fllame kernel development in spark ignition engines |
topic | LES Strömung (DE-588)4315616-2 gnd Direkte numerische Simulation (DE-588)4494453-6 gnd Flamme (DE-588)4154542-4 gnd Ottomotor (DE-588)4044196-9 gnd Verbrennung (DE-588)4062656-8 gnd |
topic_facet | LES Strömung Direkte numerische Simulation Flamme Ottomotor Verbrennung Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032475348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT falkensteintobias numericalstudyonearlyfllamekerneldevelopmentinsparkignitionengines AT shakerverlag numericalstudyonearlyfllamekerneldevelopmentinsparkignitionengines |