Analyzing and troubleshooting single-screw extruders:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cincinnati, Ohio
Hanser Publications
[2021]
München Hanser Publishers [2021] |
Ausgabe: | 2nd Edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 825 Seiten Illustrationen, Diagramme 25 cm |
ISBN: | 9781569907849 1569907846 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047065300 | ||
003 | DE-604 | ||
005 | 20210303 | ||
007 | t | ||
008 | 201216s2021 gw a||| |||| 00||| eng d | ||
015 | |a 20,N21 |2 dnb | ||
016 | 7 | |a 1210292696 |2 DE-101 | |
020 | |a 9781569907849 |c : circa EUR 249.99 (DE), circa EUR 257.00 (AT) |9 978-1-56990-784-9 | ||
020 | |a 1569907846 |9 1-56990-784-6 | ||
024 | 3 | |a 9781569907849 | |
028 | 5 | 2 | |a Bestellnummer: 559/00784 |
035 | |a (OCoLC)1237114738 | ||
035 | |a (DE-599)DNB1210292696 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-210 |a DE-91 |a DE-573 |a DE-12 | ||
084 | |a ZM 8165 |0 (DE-625)157162: |2 rvk | ||
084 | |a 660 |2 sdnb | ||
084 | |a CIT 740f |2 stub | ||
100 | 1 | |a Campbell, Gregory A. |e Verfasser |0 (DE-588)1225314119 |4 aut | |
245 | 1 | 0 | |a Analyzing and troubleshooting single-screw extruders |c Gregory A. Campbell, Mark A. Spalding |
250 | |a 2nd Edition | ||
264 | 1 | |a Cincinnati, Ohio |b Hanser Publications |c [2021] | |
264 | 1 | |a München |b Hanser Publishers |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a XIX, 825 Seiten |b Illustrationen, Diagramme |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Fehlersuche |0 (DE-588)4016615-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Einschneckenextruder |0 (DE-588)4151391-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Extrudieren |0 (DE-588)4071089-0 |2 gnd |9 rswk-swf |
653 | |a Extrusion | ||
653 | |a Kunststoffe | ||
653 | |a Kunststoffverarbeitung | ||
653 | |a FBKTEXTR: Extrudieren | ||
653 | |a PLAS2020 | ||
689 | 0 | 0 | |a Extrudieren |0 (DE-588)4071089-0 |D s |
689 | 0 | 1 | |a Einschneckenextruder |0 (DE-588)4151391-5 |D s |
689 | 0 | 2 | |a Fehlersuche |0 (DE-588)4016615-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Spalding, Mark A. |e Verfasser |0 (DE-588)120636758X |4 aut | |
710 | 2 | |a Hanser Publications |0 (DE-588)1064064051 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9781569907856 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032472406&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032472406 |
Datensatz im Suchindex
_version_ | 1804182064191242240 |
---|---|
adam_text | CONTENTS
PREFACE
................................................................................................................
V
ACKNOWLEDGEMENTS
.......................................................................................
VII
1
SINGLE-SCREW
EXTRUSION:
INTRODUCTION
AND
TROUBLESHOOTING
..
1
1.1
ORGANIZATION
OF
THIS
BOOK
..........................................................................
3
1.2
TROUBLESHOOTING
EXTRUSION
PROCESSES
......................................................
5
1.2.1
THE
INJECTION
MOLDING
PROBLEM
AT
SATURN
..................................
5
1.3
INTRODUCTION
TO
SCREW
GEOMETRY
..............................................................
6
1.3.1
SCREW
GEOMETRIC
QUANTITATIVE
CHARACTERISTICS
..........................
8
1.4
SIMPLE
FLOW
EQUATIONS
FOR
THE
METERING
SECTION
....................................
11
1.5
EXAMPLE
CALCULATIONS
................................................................................
15
1.5.1
EXAMPLE
1:
CALCULATION
OF
ROTATIONAL
AND
PRESSURE
FLOW
COMPONENTS
...................................................................................
15
1.5.2
EXAMPLE
2:
FLOW
CALCULATIONS
FOR
A
PROPERLY
OPERATING
EXTRUDER
.........................................................................................
18
1.5.3
EXAMPLE
3:
FLOW
CALCULATIONS
FOR
AN
IMPROPERLY
OPERATING
EXTRUDER
.........................................................................................
18
1.5.4
METERING
CHANNEL
CALCULATION
SUMMARY
....................................
20
NOMENCLATURE
.....................................................................................................
20
REFERENCES
...........................................................................................................
22
2
POLYMER
MATERIALS
.................................................................................
23
2.1
INTRODUCTION
AND
HISTORY
...........................................................................
24
2.1.1
HISTORY
OF
NATURAL
POLYMERS
........................................................
25
2.1.2
THE
HISTORY
OF
SYNTHETIC
POLYMERS
..............................................
26
2.2
CHARACTERISTICS
OF
SYNTHETIC
POLYMERS
......................................................
28
2.3
STRUCTURE
EFFECTS
ON
PROPERTIES
...............................................................
31
2.3.1
STEREOCHEMISTRY
...........................................................................
34
2.3.2
MELTING
AND
GLASS
TRANSITION
TEMPERATURES
..............................
35
2.3.3
CRYSTALLINITY
...................................................................................
37
2.4
POLYMER
PRODUCTION
AND
REACTION
ENGINEERING
......................................
40
2.4.1
CONDENSATION
REACTIONS
................................................................
40
2.4.2
ADDITION
REACTIONS
........................................................................
43
2.5
POLYMER
DEGRADATION
..................................................................................
46
2.5.1
CEILING
TEMPERATURE
......................................................................
49
2.5.2
DEGRADATION
OF
VINYL
POLYMERS
....................................................
51
2.5.3
DEGRADATION
OF
CONDENSATION
POLYMERS
.......................................
53
REFERENCES
............................................................................................................
54
3
INTRODUCTION
TO
POLYMER
RHEOLOGY
FOR
EXTRUSION
...........................
57
3.1
INTRODUCTION
TO
THE
DEFORMATION
OF
MATERIALS
..........................................
57
3.2
INTRODUCTION
TO
BASIC
CONCEPTS
OF
MOLECULAR
SIZE
..................................
58
3.2.1
SIZE
DISTRIBUTION
EXAMPLE
.............................................................
59
3.2.2
MOLECULAR
WEIGHT
DISTRIBUTIONS
FOR
POLYMERS
............................
60
3.3
BASIC
RHEOLOGY
CONCEPTS
..........................................................................
63
3.4
POLYMER
SOLUTION
VISCOSITY
AND
POLYMER
MOLECULAR
WEIGHT
..................
68
3.4.1
SAMPLE
CALCULATION
OF
SOLUTION
VISCOSITY
....................................
71
3.5
INTRODUCTION
TO
VISCOELASTICITY
..................................................................
72
3.6
MEASUREMENT
OF
POLYMER
VISCOSITY
..........................................................
80
3.6.1
CAPILLARY
RHEOMETERS
....................................................................
81
3.6.2
CONE
AND
PLATE
RHEOMETERS
..........................................................
91
3.6.3
MELT
INDEX
AND
MELT
FLOW
RATE
....................................................
95
3.7
VISCOSITY
OF
POLYMERS
AS
FUNCTIONS
OF
MOLECULAR
CHARACTER,
TEMPERATURE,
AND
PRESSURE
........................................................................
98
3.8
HISTORICAL
MODELS
FOR
NON-NEWTONIAN
FLOW
..............................................
103
3.9
POWER
LAW
AND
VISCOSITY
SHEAR
RATE
DEPENDENCE
..................................
105
3.9.1
SHEAR
STRESS
FROM
NEWTONIAN
TO
INFINITE
SHEAR
..........................
105
3.9.2
VISCOSITY
AS
A
FUNCTION
OF
SHEAR
RATE
..........................................
106
3.9.3
THE
POWER
LAW
AND
PROCESS
DISSIPATION
....................................
107
3.9.4
VISCOSITY,
SHEAR
RATE,
AND
DISSIPATION
........................................
107
3.9.5
PERCOLATION
IN
STRUCTURED
SYSTEMS
..............................................
110
3.9.6
TUBE
FLOW
DATA
AND
DATA
ANALYSIS
..............................................
110
3.9.7
DISPERSION
BASED
POWER
LAW
CONSTANT
N
....................................
112
3.9.8
RHEOLOGICAL
IMPLICTIONS
FOR
EXTRUSION
AND
MOLDING
PROCESSES
126
NOMENCLATURE
......................................................................................................
130
REFERENCES
...........................................................................................................
133
4
RESIN
PHYSICAL
PROPERTIES
RELATED
TO
PROCESSING
......................
137
4.1
BULK
DENSITY
AND
COMPACTION
..................................................................
138
4.1.1
MEASUREMENT
OF
BULK
DENSITY
......................................................
139
4.1.2
MEASURING
THE
COMPACTION
CHARACTERISTICS
OF
A
RESIN
..............
140
4.2
LATERAL
STRESS
RATIO
*
..........................................................
143
4.2.1
MEASURING
THE
LATERAL
STRESS
RATIO
..............................................
144
4.3
STRESS
AT
A
SLIDING
INTERFACE
......................................................................
146
4.3.1
THE
SCREW
SIMULATOR
AND
THE
MEASUREMENT
OF
THE
STRESS
AT
THE
INTERFACE
..............................................................................
147
4.4
MELTING
FLUX
...............................................................................................
149
4.5
HEAT
CAPACITY
.............................................................................................
151
4.6
THERMAL
CONDUCTIVITY
AND
HEAT
TRANSFER
................................................
153
4.7
MELT
DENSITY
...............................................................................................
154
NOMENCLATURE
.....................................................................................................
156
REFERENCES
...........................................................................................................
156
5
SOLIDS
CONVEYING
...................................................................................
159
5.1
DESCRIPTION
OF
THE
SOLIDS
CONVEYING
PROCESS
..........................................
160
5.2
LITERATURE
REVIEW
OF
SMOOTH-BORE
SOLIDS
CONVEYING
MODELS
................
162
5.2.1
DARNELL
AND
MOL
MODEL
.................................................................
165
5.2.2
TADMOR
AND
KLEIN
MODEL
..............................................................
166
5.2.3
CLARKSON
UNIVERSITY
MODELS
........................................................
167
5.2.4
HYUN
AND
SPALDING
MODEL
...........................................................
170
5.2.5
MOYSEY
AND
THOMPSON
MODEL
......................................................
171
5.3
MODERN
EXPERIMENTAL
SOLIDS
CONVEYING
DEVICES
....................................
171
5.3.1
SOLIDS
CONVEYING
DEVICES
AT
CLARKSON
UNIVERSITY
......................
172
5.3.2
THE
SOLIDS
CONVEYING
DEVICE
AT
DOW
..........................................
186
5.4
COMPARISON
OF
THE
MODIFIED
CAMPBELL-DONTULA
MODEL
WITH
EXPERIMENTAL
DATA
.....................................................................................
196
5.4.1
SOLIDS
CONVEYING EXAMPLE
CALCULATION
......................................
200
5.5
GROOVED
BORE
SOLIDS
CONVEYING
...............................................................
202
5.5.1
GROOVED
BARREL
SOLIDS
CONVEYING
MODELS
....................................
206
5.6
SOLIDS
CONVEYING
NOTES
.............................................................................
208
NOMENCLATURE
.....................................................................................................
211
REFERENCES
...........................................................................................................
213
6
THE
MELTING
PROCESS
..............................................................................
217
6.1
COMPRESSION
RATIO
AND
COMPRESSION
RATE
..............................................
219
6.2
THE
MELTING
PROCESS
..................................................................................
221
6.2.1
THE
MELTING
PROCESS
AS
A
FUNCTION
OF
SCREW
GEOMETRY
............
222
6.2.2
REVIEW
OF
THE
CLASSICAL
LITERATURE
................................................
227
6.2.3
REEVALUATION
OF
THE
TADMOR
AND
KLEIN
MELTING
DATA
................
228
6.3
THEORY
DEVELOPMENT
FOR
MELTING
USING
SCREW
ROTATION
PHYSICS
..........
231
6.3.1
MELTING
MODEL
FOR
A
CONVENTIONAL
TRANSITION
SECTION
USING
SCREW
ROTATION
PHYSICS
................................................................
232
6.3.2
MELTING
MODELS
FOR
BARRIER
SCREW
SECTIONS
................................
246
6.4
EFFECT
OF
PRESSURE
ON
MELTING
RATE
............................................................
255
6.5
ONE-DIMENSIONAL
MELTING
..........................................................................
256
6.5.1
ONE-DIMENSIONAL
MELTING
MODEL
..................................................
260
6.6
SOLID
BED
BREAKUP
......................................................................................
262
6.7
MELTING
SECTION
CHARACTERISTICS
................................................................
266
NOMENCLATURE
...............................................................................................
268
REFERENCES
............................................................................................................
270
7
FLUID
FLOW
IN
METERING
CHANNELS
......................................................
275
7.1
INTRODUCTION
TO
THE
REFERENCE
FRAME
........................................................
275
7.2
LABORATORY
OBSERVATIONS
............................................................................
278
7.3
LITERATURE
SURVEY
........................................................................................
282
7.4
DEVELOPMENT
OF
LINEARIZED
FLOW
ANALYSIS
.............................................
287
7.4.1
EXAMPLE
FLOW
CALCULATION
............................................................
303
7.5
NUMERICAL
FLOW
EVALUATION
........................................................................
306
7.5.1
SIMULATION
OF
A
500
MM
DIAMETER
MELT-FED
EXTRUDER
...............
308
7.5.2
EXTRUSION
VARIABLES
AND
ERRORS
....................................................
310
7.5.3
CORRECTIONS
TO
ROTATIONAL
FLOW
....................................................
316
7.5.4
SIMULATION
OF
THE
500
MM
DIAMETER
EXTRUDER
USING
F
C
.............
321
7.6
FRAME
DEPENDENT
VARIABLES
......................................................................
322
7.6.1
EXAMPLE
CALCULATION
OF
ENERGY
DISSIPATION
................................
325
7.7
VISCOUS
ENERGY
DISSIPATION
AND
TEMPERATURE
OF
THE
RESIN
IN
THE
CHANNEL
........................................................................................................
326
7.7.1
ENERGY
DISSIPATION
AND
CHANNEL
TEMPERATURE
FOR
SCREW
ROTATION
..........................................................................................
332
7.7.2
ENERGY
DISSIPATION
AND
CHANNEL
TEMPERATURE
FOR
BARREL
ROTATION
..........................................................................................
336
7.7.3
TEMPERATURE
INCREASE
CALCULATION
EXAMPLE
FOR
A
SCREW
PUMP
337
7.7.4
HEAT
TRANSFER
COEFFICIENTS
............................................................
342
7.7.5
TEMPERATURE
CALCULATION
USING
A
CONTROL
VOLUME
TECHNIQUE
..
343
7.7.6
NUMERICAL
COMPARISON
OF
TEMPERATURES
FOR
SCREW
AND
BARREL
ROTATIONS
........................................................................................
346
7.8
METERING
SECTION
CHARACTERISTICS
...............................................................
348
NOMENCLATURE
......................................................................................................
350
REFERENCES
...........................................................................................................
354
8
MIXING
PROCESSES
FOR
SINGLE-SCREW
EXTRUDERS
.............................
359
8.1
COMMON
MIXING
OPERATIONS
FOR
SINGLE-SCREW
EXTRUDERS
......................
360
8.1.1
COMMON
MIXING
APPLICATIONS
......................................................
361
8.2
DISPERSIVE
AND
DISTRIBUTIVE
MIXING
PROCESSES
........................................
363
8.3
FUNDAMENTALS
OF
MIXING
............................................................................
365
8.3.1
MEASURES
OF
MIXING
......................................................................
366
8.3.2
EXPERIMENTAL
DEMONSTRATION
OF
MIXING
......................................
368
8.4
THE
MELTING
PROCESS
AS
THE
PRIMARY
MECHANISM
FOR
MIXING
................
376
8.4.1
EXPERIMENTAL
ANALYSIS
OF
THE
MELTING
AND
MIXING
CAPACITY
OF
A
SCREW
......................................................................................
379
8.4.2
MIXING
AND
BARRIER-FLIGHTED
MELTING
SECTIONS
...........................
382
8.5
SECONDARY
MIXING
PROCESSES
AND
DEVICES
..............................................
383
8.5.1
MADDOCK-STYLE
MIXERS
..................................................................
384
8.5.2
BLISTER
RING
MIXERS
........................................................................
393
8.5.3
SPIRAL
DAM
MIXERS
........................................................................
395
8.5.4
PIN-TYPE
MIXERS
...........................................................................
396
8.5.5
KNOB
MIXERS
.................................................................................
397
8.5.6
GEAR
MIXERS
...................................................................................
398
8.5.7
DYNAMIC
MIXERS
...........................................................................
399
8.5.8
STATIC
MIXERS
.................................................................................
401
8.6
MIXING
USING
NATURAL
RESINS
AND
MASTERBATCHES
...................................
408
8.7
MIXING
AND
MELTING
PERFORMANCE
AS
A
FUNCTION
OF
FLIGHT
CLEARANCE
...
409
8.8
HIGH
PRESSURES
DURING
MELTING
AND
AGGLOMERATES
................................
410
8.9
EFFECT
OF
DISCHARGE
PRESSURE
ON
MIXING
.................................................
410
8.10
SHEAR
REFINEMENT
.....................................................................................
411
8.11
DIRECT
COMPOUNDING
USING
SINGLE-SCREW
EXTRUDERS
..............................
413
NOMENCLATURE
.....................................................................................................
414
REFERENCES
...........................................................................................................
416
9
SCALING
OF
SINGLE-SCREW
EXTRUSION
PROCESSES
..............................
421
9.1
SCALING
RULES
..............................................................................................
422
9.2
ENGINEERING
DESIGN
METHOD
FOR
PLASTICATING
SCREWS
..............................
423
9.2.1
PROCESS
ANALYSIS
AND
SIMULATIONS
..............................................
427
9.3
SCALE-UP
FROM
A
40
MM
DIAMETER
EXTRUDER
TO
AN
80
MM
DIAMETER
MACHINE
FOR
A
PE
RESIN
..............................................................................
427
9.4
RATE
INCREASE
FOR
AN
88.9
MM
DIAMETER
EXTRUDER
RUNNING
A
HIPS
RESIN
431
NOMENCLATURE
......................................................................................................
438
REFERENCES
............................................................................................................
439
10
INTRODUCTION
TO
TROUBLESHOOTING
THE
EXTRUSION
PROCESS
..........
441
10.1
THE
TROUBLESHOOTING
PROCESS
....................................................................
442
10.2
HYPOTHESIS
SETTING
AND
PROBLEM
SOLVING
................................................
445
10.2.1
CASE
STUDY
FOR
THE
DESIGN
OF
A
NEW
RESIN
..................................
446
10.2.2
CASE
STUDY
FOR
A
SURFACE
BLEMISH
................................................
448
10.2.3
CASE
STUDY
FOR
A
PROFILE
EXTRUSION
PROCESS
................................
449
10.3
EQUIPMENT
AND
TOOLS
NEEDED
FOR
TROUBLESHOOTING
................................
450
10.3.1
MADDOCK
SOLIDIFICATION
EXPERIMENT
............................................
452
10.4
COMMON
MECHANICAL
PROBLEMS
................................................................
453
10.4.1
FLIGHT
CLEARANCE
AND
HARD
FACING
................................................
454
10.4.2
BARREL
AND
SCREW
ALIGNMENT
........................................................
456
10.4.3
EXTRUDER
BARREL
SUPPORTS
..............................................................
457
10.4.4
FIRST-TIME
INSTALLATION
OF
A
SCREW
................................................
459
10.4.5
SCREW
BREAKS
..................................................................................
460
10.4.6
PROTECTION
FROM
HIGH-PRESSURE
EVENTS
........................................
462
10.4.7
GEARBOX
LUBRICATING
OIL
................................................................
464
10.4.8
PARTICLE
SEALS
AND
VISCOSEALS
........................................................
464
10.4.9
SCREW
CLEANING
..............................................................................
466
10.5
COMMON
ELECTRICAL
AND
SENSOR
PROBLEMS
................................................
467
10.5.1
THERMOCOUPLES
..............................................................................
467
10.5.2
PRESSURE
SENSORS
..........................................................................
467
10.5.3
ELECTRONIC
FILTERS
AND
NOISE
..........................................................
469
10.6
MOTORS
AND
DRIVE
SYSTEMS
........................................................................
470
10.6.1
MOTOR
EFFICIENCIES
AND
POWER
FACTORS
..........................................
473
10.7
TYPICAL
SCREW
CHANNEL
DIMENSIONS
........................................................
474
10.8
COMMON
CALCULATIONS
................................................................................
474
10.8.1
ENERGY
DISSIPATED
BY
THE
SCREW
..................................................
475
10.8.2
SCREW
GEOMETRY
INDICES
..............................................................
476
10.9
BARREL
TEMPERATURE
OPTIMIZATION
............................................................
477
10.10
SCREW
TEMPERATURE
PROFILE
........................................................................
481
10.11
THE
SCREW
MANUFACTURING
AND
REFURBISHING
PROCESS
............................
490
10.12
INJECTION-MOLDING
PLASTICATORS
..................................................................
498
10.12.1
CALCULATIONS
FOR
INJECTION-MOLDING
PLASTICATORS
..........................
500
10.13
NEW
EQUIPMENT
INSTALLATIONS
....................................................................
500
10.13.1
CASE
STUDY:
A
LARGE
DIAMETER
EXTRUDER
PURCHASE
....................
504
10.13.2
CASE
STUDY:
EXTRUDER
AND
LINE
PURCHASE
FOR
A
NEW
PRODUCT
...
505
10.13.3
A
HIGH-DENSITY
FOAMED
SHEET
PRODUCT
........................................
506
10.13.4
SUMMARY
FOR
NEW
EQUIPMENT
INSTALLATIONS
................................
508
NOMENCLATURE
......................................................................................................
509
REFERENCES
..............................................................................................................
511
11
CONTAMINATION
IN
THE
FINISHED
PRODUCT
........................................
515
11.1
FOREIGN
CONTAMINANTS
IN
THE
EXTRUDATE
..................................................
515
11.1.1
MELT
FILTRATION
................................................................................
516
11.1.2
METAL
FRAGMENTS
IN
THE
EXTRUDATE
..............................................
521
11.1.3
GAS
BUBBLES
IN
A
NEW
SHEET
LINE
................................................
521
11.2
GELS
IN
POLYOLEFIN
RESINS
...........................................................................
522
11.2.1
PROTOCOLS
FOR
GEL
ANALYSIS
............................................................
524
11.3
RESIN
DECOMPOSITION
IN
STAGNANT
REGIONS
OF
A
PROCESS
........................
529
11.3.1
TRANSFER
LINES
...............................................................................
530
11.4
IMPROPER
SHUTDOWN
OF
PROCESSING
EQUIPMENT
........................................
533
11.5
EQUIPMENT
PURGING
...................................................................................
534
11.6
OXYGEN
EXCLUSION
AT
THE
HOPPER
536
11.7
FLIGHT
RADII
SIZE
537
11.8
DRYING
THE
RESIN
.......................................................................................
540
11.9
COLOR
MASTERBATCHES
.................................................................................
541
11.10
CASE
STUDIES
FOR
EXTRUSION
PROCESSES
WITH
CONTAMINATION
IN
THE
PRODUCT
.......................................................................................................
542
11.10.1
INTERMITTENT
CROSSLINKED
GELS
IN
A
FILM
PRODUCT
........................
542
11.10.2
SMALL
GELS
IN
AN
LLDPE
FILM
PRODUCT
..........................................
548
11.10.3
DEGASSING
HOLES
IN
BLOW-MOLDED
BOTTLES
....................................
551
11.11
CONTAMINATION
IN
INJECTION-MOLDED
PARTS
...............................................
554
11.11.1
SPLAY
DEFECTS
FOR
INJECTION-MOLDED
PARTS
....................................
554
11.12
INJECTION-MOLDING
CASE
STUDIES
...............................................................
557
11.12.1
INJECTION-MOLDED
PARTS
WITH
SPLAY
AND
POOR
RESIN
COLOR
PURGE
557
11.12.2
BLACK
COLOR
STREAKS
IN
MOLDED
PARTS:
CASE
ONE
........................
561
11.12.3
BLACK
STREAKS
IN
MOLDED
PARTS:
CASE
TWO
..................................
566
11.12.4
SILVER
STREAKS
IN
A
CLEAR
GPPS
RESIN
INJECTION-MOLDED
PACKAGING
PART
..............................................................................
570
11.12.5
THE
INJECTION-MOLDING
PROBLEM
AT
SATURN
..................................
577
11.13
GELS
CAUSED
BY
A
POORLY
DESIGNED
TRANSFER
LINE
....................................
578
11.14
THE
INCUMBENT
RESIN
EFFECT
......................................................................
580
NOMENCLATURE
......................................................................................................
581
REFERENCES
............................................................................................................
582
12
FLOW
SURGING
............................................................................................
585
12.1
AN
OVERVIEW
OF
THE
COMMON
CAUSES
FOR
FLOW
SURGING
..........................
586
12.1.1
RELATIONSHIP
BETWEEN
DISCHARGE
PRESSURE
AND
RATE
AT
THE
DIE
586
12.2
TROUBLESHOOTING
FLOW
SURGING
PROCESSES
................................................
587
12.3
BARREL
ZONE
AND
SCREW
TEMPERATURE
CONTROL
..........................................
588
12.3.1
WATER-
AND
AIR-COOLED
BARREL
ZONES
............................................
589
12.4
ROTATION-
AND
GEOMETRY-INDUCED
PRESSURE
OSCILLATIONS
........................
590
12.5
GEAR
PUMP
CONTROL
....................................................................................
592
12.6
SOLIDS
BLOCKING
THE
FLOW
PATH
..................................................................
595
12.7
CASE
STUDIES
FOR
EXTRUSION
PROCESSES
THAT
FLOW
SURGE
..........................
595
12.7.1
POOR
BARREL
ZONE
TEMPERATURE
CONTROL
........................................
595
12.7.2
OPTIMIZATION
OF
BARREL
TEMPERATURES
FOR
IMPROVED
SOLIDS
CONVEYING
......................................................................................
598
12.7.3
FLOW
SURGING
DUE
TO
HIGH
TEMPERATURES
IN
THE
FEED
SECTION
OF
THE
SCREW
....................................................................................
600
12.7.4
FLOW
SURGING
DUE
TO
HIGH
TEMPERATURES
IN
THE
FEED
CASING
..
607
12.7.5
FLOW
SURGING
DUE
TO
A
POORLY
DESIGNED
BARRIER
ENTRY
FOR
GPPS
RESIN
....................................................................................
609
12.7.6
SOLID
BLOCKAGE
AT
THE
ENTRY
OF
A
SPIRAL
MIXER
............................
612
12.7.7
FLOW
SURGING
CAUSED
BY
A
WORN
FEED
CASING
AND
A
NEW
BARREL
618
12.7.8
FLOW
SURGING
FOR
A
PC
RESIN
EXTRUSION
PROCESS
........................
627
NOMENCLATURE
.....................................................................................................
631
REFERENCES
...........................................................................................................
632
13
RATE-LIMITED
EXTRUSION
PROCESSES
..................................................
635
13.1
VENT
FLOW
FOR
MULTIPLE-STAGE
EXTRUDERS
........................
637
13.2
SCREW
WEAR
..................................................................................................
639
13.3
HIGH-PERFORMANCE
AND
BARRIER
SCREWS
FOR
IMPROVED
RATES
....................
641
13.4
CASE
STUDIES
THAT
WERE
RATE
LIMITED
.....................................................
641
13.4.1
RATE
LIMITATION
DUE
TO
A
WORN
SCREW
..........................................
641
13.4.2
RATE
LIMITATION
DUE
TO
SOLID
POLYMER
FRAGMENTS
IN
THE
EXTRUDATE
........................................................................................
642
13.4.3
RATE
LIMITED
BY
THE
DISCHARGE
TEMPERATURE
FOR
A
PELLETIZING
EXTRUDER
........................................................................................
647
13.4.4
LARGE
DIAMETER
EXTRUDER
RUNNING
PS
RESIN
...............................
655
13.4.5
RATE
LIMITED
BY
DISCHARGE
TEMPERATURE
AND
TORQUE
FOR
STARCH
EXTRUSION
.......................................................................................
658
13.4.6
VENT
FLOW
FOR
A
TWO-STAGE
SCREW
RUNNING
A
LOW
BULK
DENSITY
PS
FEEDSTOCK
.................................................................................
661
13.4.7
INCREASING
THE
RATE
OF
A
LARGE
PART
BLOW-MOLDING
PROCESS
....
664
NOMENCLATURE
......................................................................................................
668
REFERENCES
...................................
668
14
BARRIER
AND
HIGH-PERFORMANCE
SCREWS
..........................................
671
14.1
BARRIER
SCREWS
...........................................................................................
673
14.2
WAVE
DISPERSION
SCREWS
...........................................................................
679
14.2.1
DOUBLE
WAVE
SCREW
.......................................................................
679
14.2.2
ENERGY
TRANSFER
SCREWS
...............................................................
681
14.2.3
VARIABLE
BARRIER
ENERGY
TRANSFER
SCREWS
....................................
687
14.2.4
DISTRIBUTIVE
MELT
MIXING
SCREWS
..................................................
691
14.2.5
FUSION
SCREWS
...............................................................................
695
14.3
OTHER
HIGH-PERFORMANCE
SCREW
DESIGNS
..................................................
696
14.3.1
STRATABLEND
SCREWS
.......................................................................
696
14.3.2
UNIMIX
SCREWS
.............................................................................
698
14.4
CALCULATION
OF
THE
SPECIFIC
ROTATION
RATE
................................................
699
NOMENCLATURE
.....................................................................................................
700
REFERENCES
...........................................................................................................
700
15
MELT-FED
EXTRUDERS
...............................................................................
703
15.1
SIMULATION
METHODS
...................................................................................
703
15.2
COMPOUNDING
PROCESSES
...........................................................................
704
15.2.1
COMMON
PROBLEMS
FOR
MELT-FED
EXTRUDERS
ON
COMPOUNDING
LINES
...............................................................................................
707
15.3
LARGE-DIAMETER
PUMPING
EXTRUDERS
........................................................
707
15.3.1
LOSS
OF
RATE
DUE
TO
POOR
MATERIAL
CONVEYANCE
IN
THE
FEED
SECTION
.................................................................................
717
15.3.2
OPERATION
OF
THE
SLIDE
VALVE
........................................................
719
15.3.3
NITROGEN
INERTING
ON
VENT
DOMES
................................................
720
15.4
SECONDARY
EXTRUDERS
FOR
TANDEM
FOAM
SHEET
LINES
..............................
720
15.4.1
HIGH-PERFORMANCE
COOLING
SCREWS
..............................................
724
NOMENCLATURE
......................................................................................................
728
REFERENCES
............................................................................................................
728
APPENDIX
A1
POLYMER
ABBREVIATION
DEFINITIONS
..............................................................
731
APPENDIX
A3
RHEOLOGICAL
CALCULATIONS
FOR
A
CAPILLARY
RHEOMETER
AND
FOR
A
CONE
AND
PLATE
RHEOMETER
......................................................................
733
A3.1
CAPILLARY
RHEOMETER
..................................................................................
733
A3.2
CONE
AND
PLATE
RHEOMETER
........................................................................
737
REFERENCES
............................................................................................................
739
APPENDIX
A4
SHEAR
STRESS
AT
A
SLIDING
INTERFACE
AND
MELTING
FLUXES
FOR
SELECT
RESINS
....................................................................................................
741
A4.1
SHEAR
STRESS
AT
A
SLIDING
INTERFACE
FOR
SELECT
RESINS
..............................
741
A4.2
MELTING
FLUXES
FOR
SELECT
RESINS
..............................................................
745
REFERENCES
............................................................................................................
748
APPENDIX
A5
SOLIDS
CONVEYING
MODEL
DERIVATIONS
AND
THE
COMPLETE
LDPE
SOLIDS
CONVEYING
DATA
SET
................................................................
751
A5.1
CHANNEL
DIMENSIONS,
ASSUMPTIONS,
AND
BASIC
FORCE
BALANCES
............
751
A5.2
CAMPBELL-DONTULA
MODEL
............................................................................
753
A5.2.1
MODIFIED
CAMPBELL-DONTULA
MODEL
..............................................
754
A5.3
HYUN-SPALDING
MODEL
................................................................................
756
A5.4
YAMAMURO-PENUMADU-CAMPBELL
MODEL
..................................................
758
A5.5
CAMPBELL-SPALDING
MODEL
..........................................................................
760
A5.6
THE
COMPLETE
DOW
SOLIDS
CONVEYING
DATA
SET
........................................
760
REFERENCES
...........................................................................................................
765
APPENDIX
A6
MELTING
RATE
MODEL
DEVELOPMENT
.............................................................
767
A6.1
DERIVATION
OF
THE
MELTING
PERFORMANCE
EQUATIONS
FOR
A
CONVENTIONAL
CHANNEL
..............................................................................................
767
A6.2
EFFECT
OF
STATIC
PRESSURE
ON
MELTING
...........................................................
778
REFERENCES
............................................................................................................
778
APPENDIX
A7
FLOW
AND
ENERGY
EQUATION
DEVELOPMENT
FOR
THE
METERING
CHANNEL
779
A7.1
TRANSFORMED
FRAME
FLOW
ANALYSIS
............................................................
779
A7.1.1
X-DIRECTIONAL
FLOW
.........................................................................
781
A7.1.2
Z-DIRECTIONAL
FLOW
.........................................................................
782
A7.1.3
Z-DIRECTIONAL
FLOW
FOR
HELIX
ROTATION
WITH
A
STATIONARY
SCREW
CORE
AND
BARREL
.....................................................
788
A7.1.4
2-DIRECTIONAL
FLOW
DUE
TO
A
PRESSURE
GRADIENT
..........................
790
A7.2
VISCOUS
ENERGY
DISSIPATION
FOR
SCREW
ROTATION
......................................
795
A7.2.1
VISCOUS
ENERGY
DISSIPATION
FOR
SCREW
ROTATION:
GENERALIZED
SOLUTION
.........................................................................................
795
A7.2.2
VISCOUS
ENERGY
DISSIPATION
FOR
SCREW
ROTATION
FOR
CHANNELS
WITH
SMALL
ASPECT
RATIOS
(H/W
0.1)
.............................
801
A7.3
VISCOUS
ENERGY
DISSIPATION
FOR
BARREL
ROTATION
......................................
803
A7.3.1
VISCOUS
ENERGY
DISSIPATION
FOR
BARREL
ROTATION:
GENERALIZED
SOLUTION
.........................................................................................
804
A7.3.2
VISCOUS
ENERGY
DISSIPATION
FOR
BARREL
ROTATION
FOR
CHANNELS
WITH
SMALL
ASPECT
RATIOS
(H/W
0.1)
....................
807
REFERENCES
...........................................................................................................
808
AUTHOR
INDEX
.....................................................................................................
809
SUBJECT
INDEX
......................................................................................................
817
|
adam_txt |
CONTENTS
PREFACE
.
V
ACKNOWLEDGEMENTS
.
VII
1
SINGLE-SCREW
EXTRUSION:
INTRODUCTION
AND
TROUBLESHOOTING
.
1
1.1
ORGANIZATION
OF
THIS
BOOK
.
3
1.2
TROUBLESHOOTING
EXTRUSION
PROCESSES
.
5
1.2.1
THE
INJECTION
MOLDING
PROBLEM
AT
SATURN
.
5
1.3
INTRODUCTION
TO
SCREW
GEOMETRY
.
6
1.3.1
SCREW
GEOMETRIC
QUANTITATIVE
CHARACTERISTICS
.
8
1.4
SIMPLE
FLOW
EQUATIONS
FOR
THE
METERING
SECTION
.
11
1.5
EXAMPLE
CALCULATIONS
.
15
1.5.1
EXAMPLE
1:
CALCULATION
OF
ROTATIONAL
AND
PRESSURE
FLOW
COMPONENTS
.
15
1.5.2
EXAMPLE
2:
FLOW
CALCULATIONS
FOR
A
PROPERLY
OPERATING
EXTRUDER
.
18
1.5.3
EXAMPLE
3:
FLOW
CALCULATIONS
FOR
AN
IMPROPERLY
OPERATING
EXTRUDER
.
18
1.5.4
METERING
CHANNEL
CALCULATION
SUMMARY
.
20
NOMENCLATURE
.
20
REFERENCES
.
22
2
POLYMER
MATERIALS
.
23
2.1
INTRODUCTION
AND
HISTORY
.
24
2.1.1
HISTORY
OF
NATURAL
POLYMERS
.
25
2.1.2
THE
HISTORY
OF
SYNTHETIC
POLYMERS
.
26
2.2
CHARACTERISTICS
OF
SYNTHETIC
POLYMERS
.
28
2.3
STRUCTURE
EFFECTS
ON
PROPERTIES
.
31
2.3.1
STEREOCHEMISTRY
.
34
2.3.2
MELTING
AND
GLASS
TRANSITION
TEMPERATURES
.
35
2.3.3
CRYSTALLINITY
.
37
2.4
POLYMER
PRODUCTION
AND
REACTION
ENGINEERING
.
40
2.4.1
CONDENSATION
REACTIONS
.
40
2.4.2
ADDITION
REACTIONS
.
43
2.5
POLYMER
DEGRADATION
.
46
2.5.1
CEILING
TEMPERATURE
.
49
2.5.2
DEGRADATION
OF
VINYL
POLYMERS
.
51
2.5.3
DEGRADATION
OF
CONDENSATION
POLYMERS
.
53
REFERENCES
.
54
3
INTRODUCTION
TO
POLYMER
RHEOLOGY
FOR
EXTRUSION
.
57
3.1
INTRODUCTION
TO
THE
DEFORMATION
OF
MATERIALS
.
57
3.2
INTRODUCTION
TO
BASIC
CONCEPTS
OF
MOLECULAR
SIZE
.
58
3.2.1
SIZE
DISTRIBUTION
EXAMPLE
.
59
3.2.2
MOLECULAR
WEIGHT
DISTRIBUTIONS
FOR
POLYMERS
.
60
3.3
BASIC
RHEOLOGY
CONCEPTS
.
63
3.4
POLYMER
SOLUTION
VISCOSITY
AND
POLYMER
MOLECULAR
WEIGHT
.
68
3.4.1
SAMPLE
CALCULATION
OF
SOLUTION
VISCOSITY
.
71
3.5
INTRODUCTION
TO
VISCOELASTICITY
.
72
3.6
MEASUREMENT
OF
POLYMER
VISCOSITY
.
80
3.6.1
CAPILLARY
RHEOMETERS
.
81
3.6.2
CONE
AND
PLATE
RHEOMETERS
.
91
3.6.3
MELT
INDEX
AND
MELT
FLOW
RATE
.
95
3.7
VISCOSITY
OF
POLYMERS
AS
FUNCTIONS
OF
MOLECULAR
CHARACTER,
TEMPERATURE,
AND
PRESSURE
.
98
3.8
HISTORICAL
MODELS
FOR
NON-NEWTONIAN
FLOW
.
103
3.9
POWER
LAW
AND
VISCOSITY
SHEAR
RATE
DEPENDENCE
.
105
3.9.1
SHEAR
STRESS
FROM
NEWTONIAN
TO
INFINITE
SHEAR
.
105
3.9.2
VISCOSITY
AS
A
FUNCTION
OF
SHEAR
RATE
.
106
3.9.3
THE
POWER
LAW
AND
PROCESS
DISSIPATION
.
107
3.9.4
VISCOSITY,
SHEAR
RATE,
AND
DISSIPATION
.
107
3.9.5
PERCOLATION
IN
STRUCTURED
SYSTEMS
.
110
3.9.6
TUBE
FLOW
DATA
AND
DATA
ANALYSIS
.
110
3.9.7
DISPERSION
BASED
POWER
LAW
CONSTANT
N
.
112
3.9.8
RHEOLOGICAL
IMPLICTIONS
FOR
EXTRUSION
AND
MOLDING
PROCESSES
126
NOMENCLATURE
.
130
REFERENCES
.
133
4
RESIN
PHYSICAL
PROPERTIES
RELATED
TO
PROCESSING
.
137
4.1
BULK
DENSITY
AND
COMPACTION
.
138
4.1.1
MEASUREMENT
OF
BULK
DENSITY
.
139
4.1.2
MEASURING
THE
COMPACTION
CHARACTERISTICS
OF
A
RESIN
.
140
4.2
LATERAL
STRESS
RATIO
*
.
143
4.2.1
MEASURING
THE
LATERAL
STRESS
RATIO
.
144
4.3
STRESS
AT
A
SLIDING
INTERFACE
.
146
4.3.1
THE
SCREW
SIMULATOR
AND
THE
MEASUREMENT
OF
THE
STRESS
AT
THE
INTERFACE
.
147
4.4
MELTING
FLUX
.
149
4.5
HEAT
CAPACITY
.
151
4.6
THERMAL
CONDUCTIVITY
AND
HEAT
TRANSFER
.
153
4.7
MELT
DENSITY
.
154
NOMENCLATURE
.
156
REFERENCES
.
156
5
SOLIDS
CONVEYING
.
159
5.1
DESCRIPTION
OF
THE
SOLIDS
CONVEYING
PROCESS
.
160
5.2
LITERATURE
REVIEW
OF
SMOOTH-BORE
SOLIDS
CONVEYING
MODELS
.
162
5.2.1
DARNELL
AND
MOL
MODEL
.
165
5.2.2
TADMOR
AND
KLEIN
MODEL
.
166
5.2.3
CLARKSON
UNIVERSITY
MODELS
.
167
5.2.4
HYUN
AND
SPALDING
MODEL
.
170
5.2.5
MOYSEY
AND
THOMPSON
MODEL
.
171
5.3
MODERN
EXPERIMENTAL
SOLIDS
CONVEYING
DEVICES
.
171
5.3.1
SOLIDS
CONVEYING
DEVICES
AT
CLARKSON
UNIVERSITY
.
172
5.3.2
THE
SOLIDS
CONVEYING
DEVICE
AT
DOW
.
186
5.4
COMPARISON
OF
THE
MODIFIED
CAMPBELL-DONTULA
MODEL
WITH
EXPERIMENTAL
DATA
.
196
5.4.1
SOLIDS
CONVEYING EXAMPLE
CALCULATION
.
200
5.5
GROOVED
BORE
SOLIDS
CONVEYING
.
202
5.5.1
GROOVED
BARREL
SOLIDS
CONVEYING
MODELS
.
206
5.6
SOLIDS
CONVEYING
NOTES
.
208
NOMENCLATURE
.
211
REFERENCES
.
213
6
THE
MELTING
PROCESS
.
217
6.1
COMPRESSION
RATIO
AND
COMPRESSION
RATE
.
219
6.2
THE
MELTING
PROCESS
.
221
6.2.1
THE
MELTING
PROCESS
AS
A
FUNCTION
OF
SCREW
GEOMETRY
.
222
6.2.2
REVIEW
OF
THE
CLASSICAL
LITERATURE
.
227
6.2.3
REEVALUATION
OF
THE
TADMOR
AND
KLEIN
MELTING
DATA
.
228
6.3
THEORY
DEVELOPMENT
FOR
MELTING
USING
SCREW
ROTATION
PHYSICS
.
231
6.3.1
MELTING
MODEL
FOR
A
CONVENTIONAL
TRANSITION
SECTION
USING
SCREW
ROTATION
PHYSICS
.
232
6.3.2
MELTING
MODELS
FOR
BARRIER
SCREW
SECTIONS
.
246
6.4
EFFECT
OF
PRESSURE
ON
MELTING
RATE
.
255
6.5
ONE-DIMENSIONAL
MELTING
.
256
6.5.1
ONE-DIMENSIONAL
MELTING
MODEL
.
260
6.6
SOLID
BED
BREAKUP
.
262
6.7
MELTING
SECTION
CHARACTERISTICS
.
266
NOMENCLATURE
.
268
REFERENCES
.
270
7
FLUID
FLOW
IN
METERING
CHANNELS
.
275
7.1
INTRODUCTION
TO
THE
REFERENCE
FRAME
.
275
7.2
LABORATORY
OBSERVATIONS
.
278
7.3
LITERATURE
SURVEY
.
282
7.4
DEVELOPMENT
OF
LINEARIZED
FLOW
ANALYSIS
.
287
7.4.1
EXAMPLE
FLOW
CALCULATION
.
303
7.5
NUMERICAL
FLOW
EVALUATION
.
306
7.5.1
SIMULATION
OF
A
500
MM
DIAMETER
MELT-FED
EXTRUDER
.
308
7.5.2
EXTRUSION
VARIABLES
AND
ERRORS
.
310
7.5.3
CORRECTIONS
TO
ROTATIONAL
FLOW
.
316
7.5.4
SIMULATION
OF
THE
500
MM
DIAMETER
EXTRUDER
USING
F
C
.
321
7.6
FRAME
DEPENDENT
VARIABLES
.
322
7.6.1
EXAMPLE
CALCULATION
OF
ENERGY
DISSIPATION
.
325
7.7
VISCOUS
ENERGY
DISSIPATION
AND
TEMPERATURE
OF
THE
RESIN
IN
THE
CHANNEL
.
326
7.7.1
ENERGY
DISSIPATION
AND
CHANNEL
TEMPERATURE
FOR
SCREW
ROTATION
.
332
7.7.2
ENERGY
DISSIPATION
AND
CHANNEL
TEMPERATURE
FOR
BARREL
ROTATION
.
336
7.7.3
TEMPERATURE
INCREASE
CALCULATION
EXAMPLE
FOR
A
SCREW
PUMP
337
7.7.4
HEAT
TRANSFER
COEFFICIENTS
.
342
7.7.5
TEMPERATURE
CALCULATION
USING
A
CONTROL
VOLUME
TECHNIQUE
.
343
7.7.6
NUMERICAL
COMPARISON
OF
TEMPERATURES
FOR
SCREW
AND
BARREL
ROTATIONS
.
346
7.8
METERING
SECTION
CHARACTERISTICS
.
348
NOMENCLATURE
.
350
REFERENCES
.
354
8
MIXING
PROCESSES
FOR
SINGLE-SCREW
EXTRUDERS
.
359
8.1
COMMON
MIXING
OPERATIONS
FOR
SINGLE-SCREW
EXTRUDERS
.
360
8.1.1
COMMON
MIXING
APPLICATIONS
.
361
8.2
DISPERSIVE
AND
DISTRIBUTIVE
MIXING
PROCESSES
.
363
8.3
FUNDAMENTALS
OF
MIXING
.
365
8.3.1
MEASURES
OF
MIXING
.
366
8.3.2
EXPERIMENTAL
DEMONSTRATION
OF
MIXING
.
368
8.4
THE
MELTING
PROCESS
AS
THE
PRIMARY
MECHANISM
FOR
MIXING
.
376
8.4.1
EXPERIMENTAL
ANALYSIS
OF
THE
MELTING
AND
MIXING
CAPACITY
OF
A
SCREW
.
379
8.4.2
MIXING
AND
BARRIER-FLIGHTED
MELTING
SECTIONS
.
382
8.5
SECONDARY
MIXING
PROCESSES
AND
DEVICES
.
383
8.5.1
MADDOCK-STYLE
MIXERS
.
384
8.5.2
BLISTER
RING
MIXERS
.
393
8.5.3
SPIRAL
DAM
MIXERS
.
395
8.5.4
PIN-TYPE
MIXERS
.
396
8.5.5
KNOB
MIXERS
.
397
8.5.6
GEAR
MIXERS
.
398
8.5.7
DYNAMIC
MIXERS
.
399
8.5.8
STATIC
MIXERS
.
401
8.6
MIXING
USING
NATURAL
RESINS
AND
MASTERBATCHES
.
408
8.7
MIXING
AND
MELTING
PERFORMANCE
AS
A
FUNCTION
OF
FLIGHT
CLEARANCE
.
409
8.8
HIGH
PRESSURES
DURING
MELTING
AND
AGGLOMERATES
.
410
8.9
EFFECT
OF
DISCHARGE
PRESSURE
ON
MIXING
.
410
8.10
SHEAR
REFINEMENT
.
411
8.11
DIRECT
COMPOUNDING
USING
SINGLE-SCREW
EXTRUDERS
.
413
NOMENCLATURE
.
414
REFERENCES
.
416
9
SCALING
OF
SINGLE-SCREW
EXTRUSION
PROCESSES
.
421
9.1
SCALING
RULES
.
422
9.2
ENGINEERING
DESIGN
METHOD
FOR
PLASTICATING
SCREWS
.
423
9.2.1
PROCESS
ANALYSIS
AND
SIMULATIONS
.
427
9.3
SCALE-UP
FROM
A
40
MM
DIAMETER
EXTRUDER
TO
AN
80
MM
DIAMETER
MACHINE
FOR
A
PE
RESIN
.
427
9.4
RATE
INCREASE
FOR
AN
88.9
MM
DIAMETER
EXTRUDER
RUNNING
A
HIPS
RESIN
431
NOMENCLATURE
.
438
REFERENCES
.
439
10
INTRODUCTION
TO
TROUBLESHOOTING
THE
EXTRUSION
PROCESS
.
441
10.1
THE
TROUBLESHOOTING
PROCESS
.
442
10.2
HYPOTHESIS
SETTING
AND
PROBLEM
SOLVING
.
445
10.2.1
CASE
STUDY
FOR
THE
DESIGN
OF
A
NEW
RESIN
.
446
10.2.2
CASE
STUDY
FOR
A
SURFACE
BLEMISH
.
448
10.2.3
CASE
STUDY
FOR
A
PROFILE
EXTRUSION
PROCESS
.
449
10.3
EQUIPMENT
AND
TOOLS
NEEDED
FOR
TROUBLESHOOTING
.
450
10.3.1
MADDOCK
SOLIDIFICATION
EXPERIMENT
.
452
10.4
COMMON
MECHANICAL
PROBLEMS
.
453
10.4.1
FLIGHT
CLEARANCE
AND
HARD
FACING
.
454
10.4.2
BARREL
AND
SCREW
ALIGNMENT
.
456
10.4.3
EXTRUDER
BARREL
SUPPORTS
.
457
10.4.4
FIRST-TIME
INSTALLATION
OF
A
SCREW
.
459
10.4.5
SCREW
BREAKS
.
460
10.4.6
PROTECTION
FROM
HIGH-PRESSURE
EVENTS
.
462
10.4.7
GEARBOX
LUBRICATING
OIL
.
464
10.4.8
PARTICLE
SEALS
AND
VISCOSEALS
.
464
10.4.9
SCREW
CLEANING
.
466
10.5
COMMON
ELECTRICAL
AND
SENSOR
PROBLEMS
.
467
10.5.1
THERMOCOUPLES
.
467
10.5.2
PRESSURE
SENSORS
.
467
10.5.3
ELECTRONIC
FILTERS
AND
NOISE
.
469
10.6
MOTORS
AND
DRIVE
SYSTEMS
.
470
10.6.1
MOTOR
EFFICIENCIES
AND
POWER
FACTORS
.
473
10.7
TYPICAL
SCREW
CHANNEL
DIMENSIONS
.
474
10.8
COMMON
CALCULATIONS
.
474
10.8.1
ENERGY
DISSIPATED
BY
THE
SCREW
.
475
10.8.2
SCREW
GEOMETRY
INDICES
.
476
10.9
BARREL
TEMPERATURE
OPTIMIZATION
.
477
10.10
SCREW
TEMPERATURE
PROFILE
.
481
10.11
THE
SCREW
MANUFACTURING
AND
REFURBISHING
PROCESS
.
490
10.12
INJECTION-MOLDING
PLASTICATORS
.
498
10.12.1
CALCULATIONS
FOR
INJECTION-MOLDING
PLASTICATORS
.
500
10.13
NEW
EQUIPMENT
INSTALLATIONS
.
500
10.13.1
CASE
STUDY:
A
LARGE
DIAMETER
EXTRUDER
PURCHASE
.
504
10.13.2
CASE
STUDY:
EXTRUDER
AND
LINE
PURCHASE
FOR
A
NEW
PRODUCT
.
505
10.13.3
A
HIGH-DENSITY
FOAMED
SHEET
PRODUCT
.
506
10.13.4
SUMMARY
FOR
NEW
EQUIPMENT
INSTALLATIONS
.
508
NOMENCLATURE
.
509
REFERENCES
.
511
11
CONTAMINATION
IN
THE
FINISHED
PRODUCT
.
515
11.1
FOREIGN
CONTAMINANTS
IN
THE
EXTRUDATE
.
515
11.1.1
MELT
FILTRATION
.
516
11.1.2
METAL
FRAGMENTS
IN
THE
EXTRUDATE
.
521
11.1.3
GAS
BUBBLES
IN
A
NEW
SHEET
LINE
.
521
11.2
GELS
IN
POLYOLEFIN
RESINS
.
522
11.2.1
PROTOCOLS
FOR
GEL
ANALYSIS
.
524
11.3
RESIN
DECOMPOSITION
IN
STAGNANT
REGIONS
OF
A
PROCESS
.
529
11.3.1
TRANSFER
LINES
.
530
11.4
IMPROPER
SHUTDOWN
OF
PROCESSING
EQUIPMENT
.
533
11.5
EQUIPMENT
PURGING
.
534
11.6
OXYGEN
EXCLUSION
AT
THE
HOPPER
536
11.7
FLIGHT
RADII
SIZE
537
11.8
DRYING
THE
RESIN
.
540
11.9
COLOR
MASTERBATCHES
.
541
11.10
CASE
STUDIES
FOR
EXTRUSION
PROCESSES
WITH
CONTAMINATION
IN
THE
PRODUCT
.
542
11.10.1
INTERMITTENT
CROSSLINKED
GELS
IN
A
FILM
PRODUCT
.
542
11.10.2
SMALL
GELS
IN
AN
LLDPE
FILM
PRODUCT
.
548
11.10.3
DEGASSING
HOLES
IN
BLOW-MOLDED
BOTTLES
.
551
11.11
CONTAMINATION
IN
INJECTION-MOLDED
PARTS
.
554
11.11.1
SPLAY
DEFECTS
FOR
INJECTION-MOLDED
PARTS
.
554
11.12
INJECTION-MOLDING
CASE
STUDIES
.
557
11.12.1
INJECTION-MOLDED
PARTS
WITH
SPLAY
AND
POOR
RESIN
COLOR
PURGE
557
11.12.2
BLACK
COLOR
STREAKS
IN
MOLDED
PARTS:
CASE
ONE
.
561
11.12.3
BLACK
STREAKS
IN
MOLDED
PARTS:
CASE
TWO
.
566
11.12.4
SILVER
STREAKS
IN
A
CLEAR
GPPS
RESIN
INJECTION-MOLDED
PACKAGING
PART
.
570
11.12.5
THE
INJECTION-MOLDING
PROBLEM
AT
SATURN
.
577
11.13
GELS
CAUSED
BY
A
POORLY
DESIGNED
TRANSFER
LINE
.
578
11.14
THE
INCUMBENT
RESIN
EFFECT
.
580
NOMENCLATURE
.
581
REFERENCES
.
582
12
FLOW
SURGING
.
585
12.1
AN
OVERVIEW
OF
THE
COMMON
CAUSES
FOR
FLOW
SURGING
.
586
12.1.1
RELATIONSHIP
BETWEEN
DISCHARGE
PRESSURE
AND
RATE
AT
THE
DIE
586
12.2
TROUBLESHOOTING
FLOW
SURGING
PROCESSES
.
587
12.3
BARREL
ZONE
AND
SCREW
TEMPERATURE
CONTROL
.
588
12.3.1
WATER-
AND
AIR-COOLED
BARREL
ZONES
.
589
12.4
ROTATION-
AND
GEOMETRY-INDUCED
PRESSURE
OSCILLATIONS
.
590
12.5
GEAR
PUMP
CONTROL
.
592
12.6
SOLIDS
BLOCKING
THE
FLOW
PATH
.
595
12.7
CASE
STUDIES
FOR
EXTRUSION
PROCESSES
THAT
FLOW
SURGE
.
595
12.7.1
POOR
BARREL
ZONE
TEMPERATURE
CONTROL
.
595
12.7.2
OPTIMIZATION
OF
BARREL
TEMPERATURES
FOR
IMPROVED
SOLIDS
CONVEYING
.
598
12.7.3
FLOW
SURGING
DUE
TO
HIGH
TEMPERATURES
IN
THE
FEED
SECTION
OF
THE
SCREW
.
600
12.7.4
FLOW
SURGING
DUE
TO
HIGH
TEMPERATURES
IN
THE
FEED
CASING
.
607
12.7.5
FLOW
SURGING
DUE
TO
A
POORLY
DESIGNED
BARRIER
ENTRY
FOR
GPPS
RESIN
.
609
12.7.6
SOLID
BLOCKAGE
AT
THE
ENTRY
OF
A
SPIRAL
MIXER
.
612
12.7.7
FLOW
SURGING
CAUSED
BY
A
WORN
FEED
CASING
AND
A
NEW
BARREL
618
12.7.8
FLOW
SURGING
FOR
A
PC
RESIN
EXTRUSION
PROCESS
.
627
NOMENCLATURE
.
631
REFERENCES
.
632
13
RATE-LIMITED
EXTRUSION
PROCESSES
.
635
13.1
VENT
FLOW
FOR
MULTIPLE-STAGE
EXTRUDERS
.
637
13.2
SCREW
WEAR
.
639
13.3
HIGH-PERFORMANCE
AND
BARRIER
SCREWS
FOR
IMPROVED
RATES
.
641
13.4
CASE
STUDIES
THAT
WERE
RATE
LIMITED
.
641
13.4.1
RATE
LIMITATION
DUE
TO
A
WORN
SCREW
.
641
13.4.2
RATE
LIMITATION
DUE
TO
SOLID
POLYMER
FRAGMENTS
IN
THE
EXTRUDATE
.
642
13.4.3
RATE
LIMITED
BY
THE
DISCHARGE
TEMPERATURE
FOR
A
PELLETIZING
EXTRUDER
.
647
13.4.4
LARGE
DIAMETER
EXTRUDER
RUNNING
PS
RESIN
.
655
13.4.5
RATE
LIMITED
BY
DISCHARGE
TEMPERATURE
AND
TORQUE
FOR
STARCH
EXTRUSION
.
658
13.4.6
VENT
FLOW
FOR
A
TWO-STAGE
SCREW
RUNNING
A
LOW
BULK
DENSITY
PS
FEEDSTOCK
.
661
13.4.7
INCREASING
THE
RATE
OF
A
LARGE
PART
BLOW-MOLDING
PROCESS
.
664
NOMENCLATURE
.
668
REFERENCES
.
668
14
BARRIER
AND
HIGH-PERFORMANCE
SCREWS
.
671
14.1
BARRIER
SCREWS
.
673
14.2
WAVE
DISPERSION
SCREWS
.
679
14.2.1
DOUBLE
WAVE
SCREW
.
679
14.2.2
ENERGY
TRANSFER
SCREWS
.
681
14.2.3
VARIABLE
BARRIER
ENERGY
TRANSFER
SCREWS
.
687
14.2.4
DISTRIBUTIVE
MELT
MIXING
SCREWS
.
691
14.2.5
FUSION
SCREWS
.
695
14.3
OTHER
HIGH-PERFORMANCE
SCREW
DESIGNS
.
696
14.3.1
STRATABLEND
SCREWS
.
696
14.3.2
UNIMIX
SCREWS
.
698
14.4
CALCULATION
OF
THE
SPECIFIC
ROTATION
RATE
.
699
NOMENCLATURE
.
700
REFERENCES
.
700
15
MELT-FED
EXTRUDERS
.
703
15.1
SIMULATION
METHODS
.
703
15.2
COMPOUNDING
PROCESSES
.
704
15.2.1
COMMON
PROBLEMS
FOR
MELT-FED
EXTRUDERS
ON
COMPOUNDING
LINES
.
707
15.3
LARGE-DIAMETER
PUMPING
EXTRUDERS
.
707
15.3.1
LOSS
OF
RATE
DUE
TO
POOR
MATERIAL
CONVEYANCE
IN
THE
FEED
SECTION
.
717
15.3.2
OPERATION
OF
THE
SLIDE
VALVE
.
719
15.3.3
NITROGEN
INERTING
ON
VENT
DOMES
.
720
15.4
SECONDARY
EXTRUDERS
FOR
TANDEM
FOAM
SHEET
LINES
.
720
15.4.1
HIGH-PERFORMANCE
COOLING
SCREWS
.
724
NOMENCLATURE
.
728
REFERENCES
.
728
APPENDIX
A1
POLYMER
ABBREVIATION
DEFINITIONS
.
731
APPENDIX
A3
RHEOLOGICAL
CALCULATIONS
FOR
A
CAPILLARY
RHEOMETER
AND
FOR
A
CONE
AND
PLATE
RHEOMETER
.
733
A3.1
CAPILLARY
RHEOMETER
.
733
A3.2
CONE
AND
PLATE
RHEOMETER
.
737
REFERENCES
.
739
APPENDIX
A4
SHEAR
STRESS
AT
A
SLIDING
INTERFACE
AND
MELTING
FLUXES
FOR
SELECT
RESINS
.
741
A4.1
SHEAR
STRESS
AT
A
SLIDING
INTERFACE
FOR
SELECT
RESINS
.
741
A4.2
MELTING
FLUXES
FOR
SELECT
RESINS
.
745
REFERENCES
.
748
APPENDIX
A5
SOLIDS
CONVEYING
MODEL
DERIVATIONS
AND
THE
COMPLETE
LDPE
SOLIDS
CONVEYING
DATA
SET
.
751
A5.1
CHANNEL
DIMENSIONS,
ASSUMPTIONS,
AND
BASIC
FORCE
BALANCES
.
751
A5.2
CAMPBELL-DONTULA
MODEL
.
753
A5.2.1
MODIFIED
CAMPBELL-DONTULA
MODEL
.
754
A5.3
HYUN-SPALDING
MODEL
.
756
A5.4
YAMAMURO-PENUMADU-CAMPBELL
MODEL
.
758
A5.5
CAMPBELL-SPALDING
MODEL
.
760
A5.6
THE
COMPLETE
DOW
SOLIDS
CONVEYING
DATA
SET
.
760
REFERENCES
.
765
APPENDIX
A6
MELTING
RATE
MODEL
DEVELOPMENT
.
767
A6.1
DERIVATION
OF
THE
MELTING
PERFORMANCE
EQUATIONS
FOR
A
CONVENTIONAL
CHANNEL
.
767
A6.2
EFFECT
OF
STATIC
PRESSURE
ON
MELTING
.
778
REFERENCES
.
778
APPENDIX
A7
FLOW
AND
ENERGY
EQUATION
DEVELOPMENT
FOR
THE
METERING
CHANNEL
779
A7.1
TRANSFORMED
FRAME
FLOW
ANALYSIS
.
779
A7.1.1
X-DIRECTIONAL
FLOW
.
781
A7.1.2
Z-DIRECTIONAL
FLOW
.
782
A7.1.3
Z-DIRECTIONAL
FLOW
FOR
HELIX
ROTATION
WITH
A
STATIONARY
SCREW
CORE
AND
BARREL
.
788
A7.1.4
2-DIRECTIONAL
FLOW
DUE
TO
A
PRESSURE
GRADIENT
.
790
A7.2
VISCOUS
ENERGY
DISSIPATION
FOR
SCREW
ROTATION
.
795
A7.2.1
VISCOUS
ENERGY
DISSIPATION
FOR
SCREW
ROTATION:
GENERALIZED
SOLUTION
.
795
A7.2.2
VISCOUS
ENERGY
DISSIPATION
FOR
SCREW
ROTATION
FOR
CHANNELS
WITH
SMALL
ASPECT
RATIOS
(H/W
0.1)
.
801
A7.3
VISCOUS
ENERGY
DISSIPATION
FOR
BARREL
ROTATION
.
803
A7.3.1
VISCOUS
ENERGY
DISSIPATION
FOR
BARREL
ROTATION:
GENERALIZED
SOLUTION
.
804
A7.3.2
VISCOUS
ENERGY
DISSIPATION
FOR
BARREL
ROTATION
FOR
CHANNELS
WITH
SMALL
ASPECT
RATIOS
(H/W
0.1)
.
807
REFERENCES
.
808
AUTHOR
INDEX
.
809
SUBJECT
INDEX
.
817 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Campbell, Gregory A. Spalding, Mark A. |
author_GND | (DE-588)1225314119 (DE-588)120636758X |
author_facet | Campbell, Gregory A. Spalding, Mark A. |
author_role | aut aut |
author_sort | Campbell, Gregory A. |
author_variant | g a c ga gac m a s ma mas |
building | Verbundindex |
bvnumber | BV047065300 |
classification_rvk | ZM 8165 |
classification_tum | CIT 740f |
ctrlnum | (OCoLC)1237114738 (DE-599)DNB1210292696 |
discipline | Chemie / Pharmazie Werkstoffwissenschaften Chemie-Ingenieurwesen Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Chemie / Pharmazie Werkstoffwissenschaften Chemie-Ingenieurwesen Werkstoffwissenschaften / Fertigungstechnik |
edition | 2nd Edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02265nam a22005898c 4500</leader><controlfield tag="001">BV047065300</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210303 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">201216s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N21</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1210292696</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781569907849</subfield><subfield code="c">: circa EUR 249.99 (DE), circa EUR 257.00 (AT)</subfield><subfield code="9">978-1-56990-784-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1569907846</subfield><subfield code="9">1-56990-784-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781569907849</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 559/00784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1237114738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1210292696</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 8165</subfield><subfield code="0">(DE-625)157162:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 740f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campbell, Gregory A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1225314119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing and troubleshooting single-screw extruders</subfield><subfield code="c">Gregory A. Campbell, Mark A. Spalding</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cincinnati, Ohio</subfield><subfield code="b">Hanser Publications</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="b">Hanser Publishers</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 825 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fehlersuche</subfield><subfield code="0">(DE-588)4016615-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einschneckenextruder</subfield><subfield code="0">(DE-588)4151391-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extrudieren</subfield><subfield code="0">(DE-588)4071089-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Extrusion</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kunststoffe</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kunststoffverarbeitung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">FBKTEXTR: Extrudieren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PLAS2020</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Extrudieren</subfield><subfield code="0">(DE-588)4071089-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Einschneckenextruder</subfield><subfield code="0">(DE-588)4151391-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fehlersuche</subfield><subfield code="0">(DE-588)4016615-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spalding, Mark A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120636758X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Hanser Publications</subfield><subfield code="0">(DE-588)1064064051</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9781569907856</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032472406&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032472406</subfield></datafield></record></collection> |
id | DE-604.BV047065300 |
illustrated | Illustrated |
index_date | 2024-07-03T16:12:28Z |
indexdate | 2024-07-10T09:01:36Z |
institution | BVB |
institution_GND | (DE-588)1064064051 |
isbn | 9781569907849 1569907846 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032472406 |
oclc_num | 1237114738 |
open_access_boolean | |
owner | DE-210 DE-91 DE-BY-TUM DE-573 DE-12 |
owner_facet | DE-210 DE-91 DE-BY-TUM DE-573 DE-12 |
physical | XIX, 825 Seiten Illustrationen, Diagramme 25 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Hanser Publications Hanser Publishers |
record_format | marc |
spelling | Campbell, Gregory A. Verfasser (DE-588)1225314119 aut Analyzing and troubleshooting single-screw extruders Gregory A. Campbell, Mark A. Spalding 2nd Edition Cincinnati, Ohio Hanser Publications [2021] München Hanser Publishers [2021] © 2021 XIX, 825 Seiten Illustrationen, Diagramme 25 cm txt rdacontent n rdamedia nc rdacarrier Fehlersuche (DE-588)4016615-6 gnd rswk-swf Einschneckenextruder (DE-588)4151391-5 gnd rswk-swf Extrudieren (DE-588)4071089-0 gnd rswk-swf Extrusion Kunststoffe Kunststoffverarbeitung FBKTEXTR: Extrudieren PLAS2020 Extrudieren (DE-588)4071089-0 s Einschneckenextruder (DE-588)4151391-5 s Fehlersuche (DE-588)4016615-6 s DE-604 Spalding, Mark A. Verfasser (DE-588)120636758X aut Hanser Publications (DE-588)1064064051 pbl Erscheint auch als Online-Ausgabe 9781569907856 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032472406&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Campbell, Gregory A. Spalding, Mark A. Analyzing and troubleshooting single-screw extruders Fehlersuche (DE-588)4016615-6 gnd Einschneckenextruder (DE-588)4151391-5 gnd Extrudieren (DE-588)4071089-0 gnd |
subject_GND | (DE-588)4016615-6 (DE-588)4151391-5 (DE-588)4071089-0 |
title | Analyzing and troubleshooting single-screw extruders |
title_auth | Analyzing and troubleshooting single-screw extruders |
title_exact_search | Analyzing and troubleshooting single-screw extruders |
title_exact_search_txtP | Analyzing and troubleshooting single-screw extruders |
title_full | Analyzing and troubleshooting single-screw extruders Gregory A. Campbell, Mark A. Spalding |
title_fullStr | Analyzing and troubleshooting single-screw extruders Gregory A. Campbell, Mark A. Spalding |
title_full_unstemmed | Analyzing and troubleshooting single-screw extruders Gregory A. Campbell, Mark A. Spalding |
title_short | Analyzing and troubleshooting single-screw extruders |
title_sort | analyzing and troubleshooting single screw extruders |
topic | Fehlersuche (DE-588)4016615-6 gnd Einschneckenextruder (DE-588)4151391-5 gnd Extrudieren (DE-588)4071089-0 gnd |
topic_facet | Fehlersuche Einschneckenextruder Extrudieren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032472406&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT campbellgregorya analyzingandtroubleshootingsinglescrewextruders AT spaldingmarka analyzingandtroubleshootingsinglescrewextruders AT hanserpublications analyzingandtroubleshootingsinglescrewextruders |