Sequential Monte Carlo Methods in Practice:
Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Ausgabe: | 1st ed. 2001 |
Schriftenreihe: | Information Science and Statistics
|
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning |
Beschreibung: | 1 Online-Ressource (XXVIII, 582 p) |
ISBN: | 9781475734379 |
DOI: | 10.1007/978-1-4757-3437-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064905 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475734379 |9 978-1-4757-3437-9 | ||
024 | 7 | |a 10.1007/978-1-4757-3437-9 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4757-3437-9 | ||
035 | |a (OCoLC)1227481872 | ||
035 | |a (DE-599)BVBBV047064905 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a QH 239 |0 (DE-625)141554: |2 rvk | ||
084 | |a SK 845 |0 (DE-625)143262: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
245 | 1 | 0 | |a Sequential Monte Carlo Methods in Practice |c edited by Arnaud Doucet, Nando de Freitas, Neil Gordon |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XXVIII, 582 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Information Science and Statistics | |
520 | |a Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning | ||
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Statistics | |
650 | 0 | 7 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Doucet, Arnaud |4 edt | |
700 | 1 | |a Freitas, Nando de |4 edt | |
700 | 1 | |a Gordon, Neil |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781441928870 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780387951461 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781475734386 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3437-9 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032472017 | ||
966 | e | |u https://doi.org/10.1007/978-1-4757-3437-9 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063543222272 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Doucet, Arnaud Freitas, Nando de Gordon, Neil |
author2_role | edt edt edt |
author2_variant | a d ad n d f nd ndf n g ng |
author_facet | Doucet, Arnaud Freitas, Nando de Gordon, Neil |
building | Verbundindex |
bvnumber | BV047064905 |
classification_rvk | QH 239 SK 845 SK 840 SK 820 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4757-3437-9 (OCoLC)1227481872 (DE-599)BVBBV047064905 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-1-4757-3437-9 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03920nmm a2200565zc 4500</leader><controlfield tag="001">BV047064905</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475734379</subfield><subfield code="9">978-1-4757-3437-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3437-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4757-3437-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227481872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064905</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 239</subfield><subfield code="0">(DE-625)141554:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 845</subfield><subfield code="0">(DE-625)143262:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sequential Monte Carlo Methods in Practice</subfield><subfield code="c">edited by Arnaud Doucet, Nando de Freitas, Neil Gordon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVIII, 582 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Information Science and Statistics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doucet, Arnaud</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freitas, Nando de</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gordon, Neil</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781441928870</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780387951461</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781475734386</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3437-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032472017</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3437-9</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047064905 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:36Z |
institution | BVB |
isbn | 9781475734379 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032472017 |
oclc_num | 1227481872 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XXVIII, 582 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | Information Science and Statistics |
spelling | Sequential Monte Carlo Methods in Practice edited by Arnaud Doucet, Nando de Freitas, Neil Gordon 1st ed. 2001 New York, NY Springer New York 2001 1 Online-Ressource (XXVIII, 582 p) txt rdacontent c rdamedia cr rdacarrier Information Science and Statistics Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Statistics Monte-Carlo-Simulation (DE-588)4240945-7 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Monte-Carlo-Simulation (DE-588)4240945-7 s DE-604 Doucet, Arnaud edt Freitas, Nando de edt Gordon, Neil edt Erscheint auch als Druck-Ausgabe 9781441928870 Erscheint auch als Druck-Ausgabe 9780387951461 Erscheint auch als Druck-Ausgabe 9781475734386 https://doi.org/10.1007/978-1-4757-3437-9 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Sequential Monte Carlo Methods in Practice Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Statistics Monte-Carlo-Simulation (DE-588)4240945-7 gnd |
subject_GND | (DE-588)4240945-7 (DE-588)4143413-4 |
title | Sequential Monte Carlo Methods in Practice |
title_auth | Sequential Monte Carlo Methods in Practice |
title_exact_search | Sequential Monte Carlo Methods in Practice |
title_exact_search_txtP | Sequential Monte Carlo Methods in Practice |
title_full | Sequential Monte Carlo Methods in Practice edited by Arnaud Doucet, Nando de Freitas, Neil Gordon |
title_fullStr | Sequential Monte Carlo Methods in Practice edited by Arnaud Doucet, Nando de Freitas, Neil Gordon |
title_full_unstemmed | Sequential Monte Carlo Methods in Practice edited by Arnaud Doucet, Nando de Freitas, Neil Gordon |
title_short | Sequential Monte Carlo Methods in Practice |
title_sort | sequential monte carlo methods in practice |
topic | Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Statistics Monte-Carlo-Simulation (DE-588)4240945-7 gnd |
topic_facet | Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Statistical Theory and Methods Statistics Monte-Carlo-Simulation Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4757-3437-9 |
work_keys_str_mv | AT doucetarnaud sequentialmontecarlomethodsinpractice AT freitasnandode sequentialmontecarlomethodsinpractice AT gordonneil sequentialmontecarlomethodsinpractice |