Stable Adaptive Neural Network Control:
Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solvi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
2002
|
Ausgabe: | 1st ed. 2002 |
Schriftenreihe: | The International Series on Asian Studies in Computer and Information Science
13 |
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications |
Beschreibung: | 1 Online-Ressource (XVI, 282 p) |
ISBN: | 9781475765779 |
DOI: | 10.1007/978-1-4757-6577-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047064868 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475765779 |9 978-1-4757-6577-9 | ||
024 | 7 | |a 10.1007/978-1-4757-6577-9 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4757-6577-9 | ||
035 | |a (OCoLC)1227476522 | ||
035 | |a (DE-599)BVBBV047064868 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 621 |2 23 | |
100 | 1 | |a Ge, S.S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stable Adaptive Neural Network Control |c by S.S. Ge, C.C. Hang, T.H. Lee, Tao Zhang |
250 | |a 1st ed. 2002 | ||
264 | 1 | |a New York, NY |b Springer US |c 2002 | |
300 | |a 1 Online-Ressource (XVI, 282 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The International Series on Asian Studies in Computer and Information Science |v 13 | |
520 | |a Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications | ||
650 | 4 | |a Complex Systems | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Statistical Physics and Dynamical Systems | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a System theory | |
650 | 4 | |a Calculus of variations | |
700 | 1 | |a Hang, C.C. |4 aut | |
700 | 1 | |a Lee, T.H. |4 aut | |
700 | 0 | |a Tao Zhang |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781441949325 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792375975 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781475765786 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-6577-9 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471980 | ||
966 | e | |u https://doi.org/10.1007/978-1-4757-6577-9 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063441510400 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ge, S.S Hang, C.C Lee, T.H Tao Zhang |
author_facet | Ge, S.S Hang, C.C Lee, T.H Tao Zhang |
author_role | aut aut aut aut |
author_sort | Ge, S.S |
author_variant | s g sg c h ch t l tl t z tz |
building | Verbundindex |
bvnumber | BV047064868 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4757-6577-9 (OCoLC)1227476522 (DE-599)BVBBV047064868 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4757-6577-9 |
edition | 1st ed. 2002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03696nmm a2200541zcb4500</leader><controlfield tag="001">BV047064868</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475765779</subfield><subfield code="9">978-1-4757-6577-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-6577-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4757-6577-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227476522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064868</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ge, S.S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable Adaptive Neural Network Control</subfield><subfield code="c">by S.S. Ge, C.C. Hang, T.H. Lee, Tao Zhang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2002</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 282 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The International Series on Asian Studies in Computer and Information Science</subfield><subfield code="v">13</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics and Dynamical Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hang, C.C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, T.H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Zhang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781441949325</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792375975</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781475765786</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-6577-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471980</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-6577-9</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064868 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:35Z |
institution | BVB |
isbn | 9781475765779 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471980 |
oclc_num | 1227476522 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XVI, 282 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer US |
record_format | marc |
series2 | The International Series on Asian Studies in Computer and Information Science |
spelling | Ge, S.S. Verfasser aut Stable Adaptive Neural Network Control by S.S. Ge, C.C. Hang, T.H. Lee, Tao Zhang 1st ed. 2002 New York, NY Springer US 2002 1 Online-Ressource (XVI, 282 p) txt rdacontent c rdamedia cr rdacarrier The International Series on Asian Studies in Computer and Information Science 13 Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications Complex Systems Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Statistical Physics and Dynamical Systems Statistical physics Dynamical systems System theory Calculus of variations Hang, C.C. aut Lee, T.H. aut Tao Zhang aut Erscheint auch als Druck-Ausgabe 9781441949325 Erscheint auch als Druck-Ausgabe 9780792375975 Erscheint auch als Druck-Ausgabe 9781475765786 https://doi.org/10.1007/978-1-4757-6577-9 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Ge, S.S Hang, C.C Lee, T.H Tao Zhang Stable Adaptive Neural Network Control Complex Systems Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Statistical Physics and Dynamical Systems Statistical physics Dynamical systems System theory Calculus of variations |
title | Stable Adaptive Neural Network Control |
title_auth | Stable Adaptive Neural Network Control |
title_exact_search | Stable Adaptive Neural Network Control |
title_exact_search_txtP | Stable Adaptive Neural Network Control |
title_full | Stable Adaptive Neural Network Control by S.S. Ge, C.C. Hang, T.H. Lee, Tao Zhang |
title_fullStr | Stable Adaptive Neural Network Control by S.S. Ge, C.C. Hang, T.H. Lee, Tao Zhang |
title_full_unstemmed | Stable Adaptive Neural Network Control by S.S. Ge, C.C. Hang, T.H. Lee, Tao Zhang |
title_short | Stable Adaptive Neural Network Control |
title_sort | stable adaptive neural network control |
topic | Complex Systems Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Statistical Physics and Dynamical Systems Statistical physics Dynamical systems System theory Calculus of variations |
topic_facet | Complex Systems Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Statistical Physics and Dynamical Systems Statistical physics Dynamical systems System theory Calculus of variations |
url | https://doi.org/10.1007/978-1-4757-6577-9 |
work_keys_str_mv | AT gess stableadaptiveneuralnetworkcontrol AT hangcc stableadaptiveneuralnetworkcontrol AT leeth stableadaptiveneuralnetworkcontrol AT taozhang stableadaptiveneuralnetworkcontrol |