Geometric Computing for Perception Action Systems: Concepts, Algorithms, and Scientific Applications
All the efforts to build an intelligent machine have not yet produced a satisfactory autonomous system despite the great progress that has been made in developing computer hardware over the last three decades. The complexity of the tasks that a cognitive system must perform is still not understood w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Ausgabe: | 1st ed. 2001 |
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | All the efforts to build an intelligent machine have not yet produced a satisfactory autonomous system despite the great progress that has been made in developing computer hardware over the last three decades. The complexity of the tasks that a cognitive system must perform is still not understood well enough. Let us call the endeavor of building intelligent systems as the construction of Perception Action Cycles (PAC). The key idea is to incorporate representation and learning in a flexible geometric system. Until now this issue has always been a matter of neurocomputing. The most frequently used algebraic system for neurocomputation is matrix algebra. However, calculations in geometric algebra often reveal a geometric structure which remains obscure in the equivalent matrix computations. The development of PAC in a unified comprehensive mathematical system is urgently needed to bring unity and coherance to the problems of artificial intelligence. Accordingly, we are motivated by the challenge of applying geometric algebra to the development of PAC systems. Geometric algebra provides the general mathematical framework for the development of the ideas of multi-linear algebra, multi-variable analysis, and the representation of LIE groups and LIE algebras. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. Thus, our goal is to construct PAC systems solely in the geometric algebra language. The preliminary chapters of this book introduce the reader to geometric algebra and the necessary mathematical concepts that will be needed. The latter chapters deal with a variety of applications in the field of cognitive systems in |
Beschreibung: | 1 Online-Ressource (XVI, 235 p) |
ISBN: | 9781461301776 |
DOI: | 10.1007/978-1-4613-0177-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064755 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461301776 |9 978-1-4613-0177-6 | ||
024 | 7 | |a 10.1007/978-1-4613-0177-6 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4613-0177-6 | ||
035 | |a (OCoLC)1227482054 | ||
035 | |a (DE-599)BVBBV047064755 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
100 | 1 | |a Bayro Corrochano, Eduardo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Computing for Perception Action Systems |b Concepts, Algorithms, and Scientific Applications |c by Eduardo Bayro Corrochano |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XVI, 235 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a All the efforts to build an intelligent machine have not yet produced a satisfactory autonomous system despite the great progress that has been made in developing computer hardware over the last three decades. The complexity of the tasks that a cognitive system must perform is still not understood well enough. Let us call the endeavor of building intelligent systems as the construction of Perception Action Cycles (PAC). The key idea is to incorporate representation and learning in a flexible geometric system. Until now this issue has always been a matter of neurocomputing. The most frequently used algebraic system for neurocomputation is matrix algebra. However, calculations in geometric algebra often reveal a geometric structure which remains obscure in the equivalent matrix computations. The development of PAC in a unified comprehensive mathematical system is urgently needed to bring unity and coherance to the problems of artificial intelligence. Accordingly, we are motivated by the challenge of applying geometric algebra to the development of PAC systems. Geometric algebra provides the general mathematical framework for the development of the ideas of multi-linear algebra, multi-variable analysis, and the representation of LIE groups and LIE algebras. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. Thus, our goal is to construct PAC systems solely in the geometric algebra language. The preliminary chapters of this book introduce the reader to geometric algebra and the necessary mathematical concepts that will be needed. The latter chapters deal with a variety of applications in the field of cognitive systems in | ||
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Computer Science, general | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computer science | |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Algebra |0 (DE-588)4156707-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 1 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 2 | |a Geometrische Algebra |0 (DE-588)4156707-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 1 | 1 | |a Geometrische Algebra |0 (DE-588)4156707-9 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461265351 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780387951911 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461301783 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0177-6 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471867 | ||
966 | e | |u https://doi.org/10.1007/978-1-4613-0177-6 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063208726528 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bayro Corrochano, Eduardo |
author_facet | Bayro Corrochano, Eduardo |
author_role | aut |
author_sort | Bayro Corrochano, Eduardo |
author_variant | c e b ce ceb |
building | Verbundindex |
bvnumber | BV047064755 |
classification_rvk | ST 330 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4613-0177-6 (OCoLC)1227482054 (DE-599)BVBBV047064755 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4613-0177-6 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04138nmm a2200589zc 4500</leader><controlfield tag="001">BV047064755</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461301776</subfield><subfield code="9">978-1-4613-0177-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0177-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4613-0177-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227482054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bayro Corrochano, Eduardo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Computing for Perception Action Systems</subfield><subfield code="b">Concepts, Algorithms, and Scientific Applications</subfield><subfield code="c">by Eduardo Bayro Corrochano</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 235 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">All the efforts to build an intelligent machine have not yet produced a satisfactory autonomous system despite the great progress that has been made in developing computer hardware over the last three decades. The complexity of the tasks that a cognitive system must perform is still not understood well enough. Let us call the endeavor of building intelligent systems as the construction of Perception Action Cycles (PAC). The key idea is to incorporate representation and learning in a flexible geometric system. Until now this issue has always been a matter of neurocomputing. The most frequently used algebraic system for neurocomputation is matrix algebra. However, calculations in geometric algebra often reveal a geometric structure which remains obscure in the equivalent matrix computations. The development of PAC in a unified comprehensive mathematical system is urgently needed to bring unity and coherance to the problems of artificial intelligence. Accordingly, we are motivated by the challenge of applying geometric algebra to the development of PAC systems. Geometric algebra provides the general mathematical framework for the development of the ideas of multi-linear algebra, multi-variable analysis, and the representation of LIE groups and LIE algebras. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. Thus, our goal is to construct PAC systems solely in the geometric algebra language. The preliminary chapters of this book introduce the reader to geometric algebra and the necessary mathematical concepts that will be needed. The latter chapters deal with a variety of applications in the field of cognitive systems in</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461265351</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780387951911</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461301783</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0177-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471867</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-0177-6</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064755 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:35Z |
institution | BVB |
isbn | 9781461301776 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471867 |
oclc_num | 1227482054 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XVI, 235 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
spelling | Bayro Corrochano, Eduardo Verfasser aut Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications by Eduardo Bayro Corrochano 1st ed. 2001 New York, NY Springer New York 2001 1 Online-Ressource (XVI, 235 p) txt rdacontent c rdamedia cr rdacarrier All the efforts to build an intelligent machine have not yet produced a satisfactory autonomous system despite the great progress that has been made in developing computer hardware over the last three decades. The complexity of the tasks that a cognitive system must perform is still not understood well enough. Let us call the endeavor of building intelligent systems as the construction of Perception Action Cycles (PAC). The key idea is to incorporate representation and learning in a flexible geometric system. Until now this issue has always been a matter of neurocomputing. The most frequently used algebraic system for neurocomputation is matrix algebra. However, calculations in geometric algebra often reveal a geometric structure which remains obscure in the equivalent matrix computations. The development of PAC in a unified comprehensive mathematical system is urgently needed to bring unity and coherance to the problems of artificial intelligence. Accordingly, we are motivated by the challenge of applying geometric algebra to the development of PAC systems. Geometric algebra provides the general mathematical framework for the development of the ideas of multi-linear algebra, multi-variable analysis, and the representation of LIE groups and LIE algebras. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. Thus, our goal is to construct PAC systems solely in the geometric algebra language. The preliminary chapters of this book introduce the reader to geometric algebra and the necessary mathematical concepts that will be needed. The latter chapters deal with a variety of applications in the field of cognitive systems in Artificial Intelligence Computer Science, general Artificial intelligence Computer science Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Geometrische Algebra (DE-588)4156707-9 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 s Clifford-Algebra (DE-588)4199958-7 s Geometrische Algebra (DE-588)4156707-9 s DE-604 Bildverarbeitung (DE-588)4006684-8 s Erscheint auch als Druck-Ausgabe 9781461265351 Erscheint auch als Druck-Ausgabe 9780387951911 Erscheint auch als Druck-Ausgabe 9781461301783 https://doi.org/10.1007/978-1-4613-0177-6 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Bayro Corrochano, Eduardo Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications Artificial Intelligence Computer Science, general Artificial intelligence Computer science Maschinelles Sehen (DE-588)4129594-8 gnd Clifford-Algebra (DE-588)4199958-7 gnd Geometrische Algebra (DE-588)4156707-9 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
subject_GND | (DE-588)4129594-8 (DE-588)4199958-7 (DE-588)4156707-9 (DE-588)4006684-8 |
title | Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications |
title_auth | Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications |
title_exact_search | Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications |
title_exact_search_txtP | Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications |
title_full | Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications by Eduardo Bayro Corrochano |
title_fullStr | Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications by Eduardo Bayro Corrochano |
title_full_unstemmed | Geometric Computing for Perception Action Systems Concepts, Algorithms, and Scientific Applications by Eduardo Bayro Corrochano |
title_short | Geometric Computing for Perception Action Systems |
title_sort | geometric computing for perception action systems concepts algorithms and scientific applications |
title_sub | Concepts, Algorithms, and Scientific Applications |
topic | Artificial Intelligence Computer Science, general Artificial intelligence Computer science Maschinelles Sehen (DE-588)4129594-8 gnd Clifford-Algebra (DE-588)4199958-7 gnd Geometrische Algebra (DE-588)4156707-9 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
topic_facet | Artificial Intelligence Computer Science, general Artificial intelligence Computer science Maschinelles Sehen Clifford-Algebra Geometrische Algebra Bildverarbeitung |
url | https://doi.org/10.1007/978-1-4613-0177-6 |
work_keys_str_mv | AT bayrocorrochanoeduardo geometriccomputingforperceptionactionsystemsconceptsalgorithmsandscientificapplications |