Evolutionary Algorithms for Solving Multi-Objective Problems:
Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are sol...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
2002
|
Ausgabe: | 1st ed. 2002 |
Schriftenreihe: | Genetic Algorithms and Evolutionary Computation
5 |
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface |
Beschreibung: | 1 Online-Ressource (XXXV, 576 p. 85 illus) |
ISBN: | 9781475751840 |
DOI: | 10.1007/978-1-4757-5184-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047064749 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781475751840 |9 978-1-4757-5184-0 | ||
024 | 7 | |a 10.1007/978-1-4757-5184-0 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4757-5184-0 | ||
035 | |a (OCoLC)1227477581 | ||
035 | |a (DE-599)BVBBV047064749 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a SK 970 |0 (DE-625)143276: |2 rvk | ||
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Coello Coello, Carlos |e Verfasser |4 aut | |
245 | 1 | 0 | |a Evolutionary Algorithms for Solving Multi-Objective Problems |c by Carlos Coello Coello, David A. Van Veldhuizen, Gary B. Lamont |
250 | |a 1st ed. 2002 | ||
264 | 1 | |a New York, NY |b Springer US |c 2002 | |
300 | |a 1 Online-Ressource (XXXV, 576 p. 85 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Genetic Algorithms and Evolutionary Computation |v 5 | |
520 | |a Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface | ||
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computers | |
650 | 4 | |a Engineering | |
650 | 4 | |a Operations research | |
650 | 4 | |a Decision making | |
650 | 0 | 7 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionärer Algorithmus |0 (DE-588)4366912-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionäre Systementwicklung |0 (DE-588)4672442-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evolutionärer Algorithmus |0 (DE-588)4366912-8 |D s |
689 | 0 | 1 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Evolutionäre Systementwicklung |0 (DE-588)4672442-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Van Veldhuizen, David A. |4 aut | |
700 | 1 | |a Lamont, Gary B. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781475751864 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781475751857 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780306467622 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-5184-0 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471861 | ||
966 | e | |u https://doi.org/10.1007/978-1-4757-5184-0 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063173074944 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Coello Coello, Carlos Van Veldhuizen, David A. Lamont, Gary B. |
author_facet | Coello Coello, Carlos Van Veldhuizen, David A. Lamont, Gary B. |
author_role | aut aut aut |
author_sort | Coello Coello, Carlos |
author_variant | c c c cc ccc v d a v vda vdav g b l gb gbl |
building | Verbundindex |
bvnumber | BV047064749 |
classification_rvk | SK 970 ST 285 ST 301 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4757-5184-0 (OCoLC)1227477581 (DE-599)BVBBV047064749 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4757-5184-0 |
edition | 1st ed. 2002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04244nmm a2200673zcb4500</leader><controlfield tag="001">BV047064749</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475751840</subfield><subfield code="9">978-1-4757-5184-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-5184-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4757-5184-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227477581</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 970</subfield><subfield code="0">(DE-625)143276:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coello Coello, Carlos</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolutionary Algorithms for Solving Multi-Objective Problems</subfield><subfield code="c">by Carlos Coello Coello, David A. Van Veldhuizen, Gary B. Lamont</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2002</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXV, 576 p. 85 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Genetic Algorithms and Evolutionary Computation</subfield><subfield code="v">5</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionärer Algorithmus</subfield><subfield code="0">(DE-588)4366912-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionäre Systementwicklung</subfield><subfield code="0">(DE-588)4672442-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionärer Algorithmus</subfield><subfield code="0">(DE-588)4366912-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Evolutionäre Systementwicklung</subfield><subfield code="0">(DE-588)4672442-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Veldhuizen, David A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamont, Gary B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781475751864</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781475751857</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780306467622</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-5184-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471861</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-5184-0</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064749 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:35Z |
institution | BVB |
isbn | 9781475751840 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471861 |
oclc_num | 1227477581 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XXXV, 576 p. 85 illus) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer US |
record_format | marc |
series2 | Genetic Algorithms and Evolutionary Computation |
spelling | Coello Coello, Carlos Verfasser aut Evolutionary Algorithms for Solving Multi-Objective Problems by Carlos Coello Coello, David A. Van Veldhuizen, Gary B. Lamont 1st ed. 2002 New York, NY Springer US 2002 1 Online-Ressource (XXXV, 576 p. 85 illus) txt rdacontent c rdamedia cr rdacarrier Genetic Algorithms and Evolutionary Computation 5 Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface Artificial Intelligence Theory of Computation Engineering, general Operations Research/Decision Theory Artificial intelligence Computers Engineering Operations research Decision making Mehrkriterielle Optimierung (DE-588)4610682-0 gnd rswk-swf Evolutionärer Algorithmus (DE-588)4366912-8 gnd rswk-swf Evolutionäre Systementwicklung (DE-588)4672442-4 gnd rswk-swf Evolutionärer Algorithmus (DE-588)4366912-8 s Mehrkriterielle Optimierung (DE-588)4610682-0 s DE-604 Evolutionäre Systementwicklung (DE-588)4672442-4 s Van Veldhuizen, David A. aut Lamont, Gary B. aut Erscheint auch als Druck-Ausgabe 9781475751864 Erscheint auch als Druck-Ausgabe 9781475751857 Erscheint auch als Druck-Ausgabe 9780306467622 https://doi.org/10.1007/978-1-4757-5184-0 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Coello Coello, Carlos Van Veldhuizen, David A. Lamont, Gary B. Evolutionary Algorithms for Solving Multi-Objective Problems Artificial Intelligence Theory of Computation Engineering, general Operations Research/Decision Theory Artificial intelligence Computers Engineering Operations research Decision making Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Evolutionärer Algorithmus (DE-588)4366912-8 gnd Evolutionäre Systementwicklung (DE-588)4672442-4 gnd |
subject_GND | (DE-588)4610682-0 (DE-588)4366912-8 (DE-588)4672442-4 |
title | Evolutionary Algorithms for Solving Multi-Objective Problems |
title_auth | Evolutionary Algorithms for Solving Multi-Objective Problems |
title_exact_search | Evolutionary Algorithms for Solving Multi-Objective Problems |
title_exact_search_txtP | Evolutionary Algorithms for Solving Multi-Objective Problems |
title_full | Evolutionary Algorithms for Solving Multi-Objective Problems by Carlos Coello Coello, David A. Van Veldhuizen, Gary B. Lamont |
title_fullStr | Evolutionary Algorithms for Solving Multi-Objective Problems by Carlos Coello Coello, David A. Van Veldhuizen, Gary B. Lamont |
title_full_unstemmed | Evolutionary Algorithms for Solving Multi-Objective Problems by Carlos Coello Coello, David A. Van Veldhuizen, Gary B. Lamont |
title_short | Evolutionary Algorithms for Solving Multi-Objective Problems |
title_sort | evolutionary algorithms for solving multi objective problems |
topic | Artificial Intelligence Theory of Computation Engineering, general Operations Research/Decision Theory Artificial intelligence Computers Engineering Operations research Decision making Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Evolutionärer Algorithmus (DE-588)4366912-8 gnd Evolutionäre Systementwicklung (DE-588)4672442-4 gnd |
topic_facet | Artificial Intelligence Theory of Computation Engineering, general Operations Research/Decision Theory Artificial intelligence Computers Engineering Operations research Decision making Mehrkriterielle Optimierung Evolutionärer Algorithmus Evolutionäre Systementwicklung |
url | https://doi.org/10.1007/978-1-4757-5184-0 |
work_keys_str_mv | AT coellocoellocarlos evolutionaryalgorithmsforsolvingmultiobjectiveproblems AT vanveldhuizendavida evolutionaryalgorithmsforsolvingmultiobjectiveproblems AT lamontgaryb evolutionaryalgorithmsforsolvingmultiobjectiveproblems |