Geometric Computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics
Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing differen...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001
|
Ausgabe: | 1st ed. 2001 |
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism |
Beschreibung: | 1 Online-Ressource (XVIII, 551 p) |
ISBN: | 9783662046210 |
DOI: | 10.1007/978-3-662-04621-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064677 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783662046210 |9 978-3-662-04621-0 | ||
024 | 7 | |a 10.1007/978-3-662-04621-0 |2 doi | |
035 | |a (ZDB-2-SCS)978-3-662-04621-0 | ||
035 | |a (OCoLC)1227481644 | ||
035 | |a (DE-599)BVBBV047064677 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.6 |2 23 | |
082 | 0 | |a 006.37 |2 23 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
245 | 1 | 0 | |a Geometric Computing with Clifford Algebras |b Theoretical Foundations and Applications in Computer Vision and Robotics |c edited by Gerald Sommer |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2001 | |
300 | |a 1 Online-Ressource (XVIII, 551 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism | ||
650 | 4 | |a Image Processing and Computer Vision | |
650 | 4 | |a Computer Graphics | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Symbolic and Algebraic Manipulation | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Optical data processing | |
650 | 4 | |a Computer graphics | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computer science—Mathematics | |
650 | 4 | |a Algebraic geometry | |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anwendung |0 (DE-588)4196864-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 1 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sommer, Gerald |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642074424 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540411987 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783662046227 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04621-0 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471789 | ||
966 | e | |u https://doi.org/10.1007/978-3-662-04621-0 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063032565760 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Sommer, Gerald |
author2_role | edt |
author2_variant | g s gs |
author_facet | Sommer, Gerald |
building | Verbundindex |
bvnumber | BV047064677 |
classification_rvk | SK 230 SK 380 SK 950 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-3-662-04621-0 (OCoLC)1227481644 (DE-599)BVBBV047064677 |
dewey-full | 006.6 006.37 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.6 006.37 |
dewey-search | 006.6 006.37 |
dewey-sort | 16.6 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1007/978-3-662-04621-0 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03259nmm a2200625zc 4500</leader><controlfield tag="001">BV047064677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662046210</subfield><subfield code="9">978-3-662-04621-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04621-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-3-662-04621-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227481644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.37</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Computing with Clifford Algebras</subfield><subfield code="b">Theoretical Foundations and Applications in Computer Vision and Robotics</subfield><subfield code="c">edited by Gerald Sommer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 551 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing and Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommer, Gerald</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642074424</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540411987</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783662046227</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04621-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471789</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-04621-0</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064677 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:35Z |
institution | BVB |
isbn | 9783662046210 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471789 |
oclc_num | 1227481644 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XVIII, 551 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics edited by Gerald Sommer 1st ed. 2001 Berlin, Heidelberg Springer Berlin Heidelberg 2001 1 Online-Ressource (XVIII, 551 p) txt rdacontent c rdamedia cr rdacarrier Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism Image Processing and Computer Vision Computer Graphics Artificial Intelligence Symbolic and Algebraic Manipulation Algebraic Geometry Optical data processing Computer graphics Artificial intelligence Computer science—Mathematics Algebraic geometry Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Anwendung (DE-588)4196864-5 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 s Anwendung (DE-588)4196864-5 s DE-604 Sommer, Gerald edt Erscheint auch als Druck-Ausgabe 9783642074424 Erscheint auch als Druck-Ausgabe 9783540411987 Erscheint auch als Druck-Ausgabe 9783662046227 https://doi.org/10.1007/978-3-662-04621-0 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics Image Processing and Computer Vision Computer Graphics Artificial Intelligence Symbolic and Algebraic Manipulation Algebraic Geometry Optical data processing Computer graphics Artificial intelligence Computer science—Mathematics Algebraic geometry Clifford-Algebra (DE-588)4199958-7 gnd Anwendung (DE-588)4196864-5 gnd |
subject_GND | (DE-588)4199958-7 (DE-588)4196864-5 |
title | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics |
title_auth | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics |
title_exact_search | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics |
title_exact_search_txtP | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics |
title_full | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics edited by Gerald Sommer |
title_fullStr | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics edited by Gerald Sommer |
title_full_unstemmed | Geometric Computing with Clifford Algebras Theoretical Foundations and Applications in Computer Vision and Robotics edited by Gerald Sommer |
title_short | Geometric Computing with Clifford Algebras |
title_sort | geometric computing with clifford algebras theoretical foundations and applications in computer vision and robotics |
title_sub | Theoretical Foundations and Applications in Computer Vision and Robotics |
topic | Image Processing and Computer Vision Computer Graphics Artificial Intelligence Symbolic and Algebraic Manipulation Algebraic Geometry Optical data processing Computer graphics Artificial intelligence Computer science—Mathematics Algebraic geometry Clifford-Algebra (DE-588)4199958-7 gnd Anwendung (DE-588)4196864-5 gnd |
topic_facet | Image Processing and Computer Vision Computer Graphics Artificial Intelligence Symbolic and Algebraic Manipulation Algebraic Geometry Optical data processing Computer graphics Artificial intelligence Computer science—Mathematics Algebraic geometry Clifford-Algebra Anwendung |
url | https://doi.org/10.1007/978-3-662-04621-0 |
work_keys_str_mv | AT sommergerald geometriccomputingwithcliffordalgebrastheoreticalfoundationsandapplicationsincomputervisionandrobotics |