Landmark-Based Image Analysis: Using Geometric and Intensity Models
Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radio...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2001
|
Ausgabe: | 1st ed. 2001 |
Schriftenreihe: | Computational Imaging and Vision
21 |
Schlagworte: | |
Online-Zugang: | UBY01 URL des Eerstveröffentlichers |
Zusammenfassung: | Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre sent the image intensities, i. e. ,the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im ages such as traditional 20 video images or 3D medical tomographic images |
Beschreibung: | 1 Online-Ressource (XIV, 306 p) |
ISBN: | 9789401597876 |
DOI: | 10.1007/978-94-015-9787-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047064422 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789401597876 |9 978-94-015-9787-6 | ||
024 | 7 | |a 10.1007/978-94-015-9787-6 |2 doi | |
035 | |a (ZDB-2-SCS)978-94-015-9787-6 | ||
035 | |a (OCoLC)1227483610 | ||
035 | |a (DE-599)BVBBV047064422 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.6 |2 23 | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
100 | 1 | |a Rohr, Karl |e Verfasser |4 aut | |
245 | 1 | 0 | |a Landmark-Based Image Analysis |b Using Geometric and Intensity Models |c by Karl Rohr |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2001 | |
300 | |a 1 Online-Ressource (XIV, 306 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Computational Imaging and Vision |v 21 | |
520 | |a Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre sent the image intensities, i. e. ,the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im ages such as traditional 20 video images or 3D medical tomographic images | ||
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Thoracic Surgery | |
650 | 4 | |a Imaging / Radiology | |
650 | 4 | |a Image Processing and Computer Vision | |
650 | 4 | |a Neuroradiology | |
650 | 4 | |a Optical data processing | |
650 | 4 | |a Thoracic surgery | |
650 | 4 | |a Radiology | |
650 | 4 | |a Neuroradiology | |
650 | 0 | 7 | |a Landmarke |0 (DE-588)4360533-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildanalyse |0 (DE-588)4145391-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bildanalyse |0 (DE-588)4145391-8 |D s |
689 | 0 | 1 | |a Landmarke |0 (DE-588)4360533-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789048156306 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792367512 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789401597883 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9787-6 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471533 | ||
966 | e | |u https://doi.org/10.1007/978-94-015-9787-6 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182062403420160 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rohr, Karl |
author_facet | Rohr, Karl |
author_role | aut |
author_sort | Rohr, Karl |
author_variant | k r kr |
building | Verbundindex |
bvnumber | BV047064422 |
classification_rvk | ST 330 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-94-015-9787-6 (OCoLC)1227483610 (DE-599)BVBBV047064422 |
dewey-full | 006.6 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.6 |
dewey-search | 006.6 |
dewey-sort | 16.6 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-94-015-9787-6 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03712nmm a2200589zcb4500</leader><controlfield tag="001">BV047064422</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401597876</subfield><subfield code="9">978-94-015-9787-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9787-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-94-015-9787-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227483610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064422</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rohr, Karl</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Landmark-Based Image Analysis</subfield><subfield code="b">Using Geometric and Intensity Models</subfield><subfield code="c">by Karl Rohr</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 306 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational Imaging and Vision</subfield><subfield code="v">21</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre sent the image intensities, i. e. ,the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im ages such as traditional 20 video images or 3D medical tomographic images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic Surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaging / Radiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing and Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroradiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroradiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Landmarke</subfield><subfield code="0">(DE-588)4360533-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Landmarke</subfield><subfield code="0">(DE-588)4360533-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789048156306</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792367512</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789401597883</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9787-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471533</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-015-9787-6</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064422 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:22Z |
indexdate | 2024-07-10T09:01:34Z |
institution | BVB |
isbn | 9789401597876 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471533 |
oclc_num | 1227483610 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XIV, 306 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Computational Imaging and Vision |
spelling | Rohr, Karl Verfasser aut Landmark-Based Image Analysis Using Geometric and Intensity Models by Karl Rohr 1st ed. 2001 Dordrecht Springer Netherlands 2001 1 Online-Ressource (XIV, 306 p) txt rdacontent c rdamedia cr rdacarrier Computational Imaging and Vision 21 Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre sent the image intensities, i. e. ,the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im ages such as traditional 20 video images or 3D medical tomographic images Computer Imaging, Vision, Pattern Recognition and Graphics Thoracic Surgery Imaging / Radiology Image Processing and Computer Vision Neuroradiology Optical data processing Thoracic surgery Radiology Landmarke (DE-588)4360533-3 gnd rswk-swf Bildanalyse (DE-588)4145391-8 gnd rswk-swf Bildanalyse (DE-588)4145391-8 s Landmarke (DE-588)4360533-3 s DE-604 Erscheint auch als Druck-Ausgabe 9789048156306 Erscheint auch als Druck-Ausgabe 9780792367512 Erscheint auch als Druck-Ausgabe 9789401597883 https://doi.org/10.1007/978-94-015-9787-6 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Rohr, Karl Landmark-Based Image Analysis Using Geometric and Intensity Models Computer Imaging, Vision, Pattern Recognition and Graphics Thoracic Surgery Imaging / Radiology Image Processing and Computer Vision Neuroradiology Optical data processing Thoracic surgery Radiology Landmarke (DE-588)4360533-3 gnd Bildanalyse (DE-588)4145391-8 gnd |
subject_GND | (DE-588)4360533-3 (DE-588)4145391-8 |
title | Landmark-Based Image Analysis Using Geometric and Intensity Models |
title_auth | Landmark-Based Image Analysis Using Geometric and Intensity Models |
title_exact_search | Landmark-Based Image Analysis Using Geometric and Intensity Models |
title_exact_search_txtP | Landmark-Based Image Analysis Using Geometric and Intensity Models |
title_full | Landmark-Based Image Analysis Using Geometric and Intensity Models by Karl Rohr |
title_fullStr | Landmark-Based Image Analysis Using Geometric and Intensity Models by Karl Rohr |
title_full_unstemmed | Landmark-Based Image Analysis Using Geometric and Intensity Models by Karl Rohr |
title_short | Landmark-Based Image Analysis |
title_sort | landmark based image analysis using geometric and intensity models |
title_sub | Using Geometric and Intensity Models |
topic | Computer Imaging, Vision, Pattern Recognition and Graphics Thoracic Surgery Imaging / Radiology Image Processing and Computer Vision Neuroradiology Optical data processing Thoracic surgery Radiology Landmarke (DE-588)4360533-3 gnd Bildanalyse (DE-588)4145391-8 gnd |
topic_facet | Computer Imaging, Vision, Pattern Recognition and Graphics Thoracic Surgery Imaging / Radiology Image Processing and Computer Vision Neuroradiology Optical data processing Thoracic surgery Radiology Landmarke Bildanalyse |
url | https://doi.org/10.1007/978-94-015-9787-6 |
work_keys_str_mv | AT rohrkarl landmarkbasedimageanalysisusinggeometricandintensitymodels |