Extremal Combinatorics: With Applications in Computer Science
Combinatorial mathematics has been pursued since time immemorial, and at a reasonable scientific level at least since Leonhard Euler (1707-1783). It ren dered many services to both pure and applied mathematics. Then along came the prince of computer science with its many mathematical problems and n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001
|
Ausgabe: | 1st ed. 2001 |
Schriftenreihe: | Texts in Theoretical Computer Science. An EATCS Series
|
Schlagworte: | |
Online-Zugang: | UBY01 URL des Eerstveröffentlichers |
Zusammenfassung: | Combinatorial mathematics has been pursued since time immemorial, and at a reasonable scientific level at least since Leonhard Euler (1707-1783). It ren dered many services to both pure and applied mathematics. Then along came the prince of computer science with its many mathematical problems and needs - and it was combinatorics that best fitted the glass slipper held out. Moreover, it has been gradually more and more realized that combinatorics has all sorts of deep connections with "mainstream areas" of mathematics, such as algebra, geometry and probability. This is why combinatorics is now apart of the standard mathematics and computer science curriculum. This book is as an introduction to extremal combinatorics - a field of com binatorial mathematics which has undergone aperiod of spectacular growth in recent decades. The word "extremal" comes from the nature of problems this field deals with: if a collection of finite objects (numbers, graphs, vectors, sets, etc. ) satisfies certain restrictions, how large or how small can it be? For example, how many people can we invite to a party where among each three people there are two who know each other and two who don't know each other? An easy Ramsey-type argument shows that at most five persons can attend such a party. Or, suppose we are given a finite set of nonzero integers, and are asked to mark an as large as possible subset of them under the restriction that the sum of any two marked integers cannot be marked |
Beschreibung: | 1 Online-Ressource (XVII, 378 p) |
ISBN: | 9783662046500 |
DOI: | 10.1007/978-3-662-04650-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064421 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783662046500 |9 978-3-662-04650-0 | ||
024 | 7 | |a 10.1007/978-3-662-04650-0 |2 doi | |
035 | |a (ZDB-2-SCS)978-3-662-04650-0 | ||
035 | |a (OCoLC)1227481653 | ||
035 | |a (DE-599)BVBBV047064421 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 004.0151 |2 23 | |
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
100 | 1 | |a Jukna, Stasys |e Verfasser |4 aut | |
245 | 1 | 0 | |a Extremal Combinatorics |b With Applications in Computer Science |c by Stasys Jukna |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2001 | |
300 | |a 1 Online-Ressource (XVII, 378 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts in Theoretical Computer Science. An EATCS Series | |
520 | |a Combinatorial mathematics has been pursued since time immemorial, and at a reasonable scientific level at least since Leonhard Euler (1707-1783). It ren dered many services to both pure and applied mathematics. Then along came the prince of computer science with its many mathematical problems and needs - and it was combinatorics that best fitted the glass slipper held out. Moreover, it has been gradually more and more realized that combinatorics has all sorts of deep connections with "mainstream areas" of mathematics, such as algebra, geometry and probability. This is why combinatorics is now apart of the standard mathematics and computer science curriculum. This book is as an introduction to extremal combinatorics - a field of com binatorial mathematics which has undergone aperiod of spectacular growth in recent decades. The word "extremal" comes from the nature of problems this field deals with: if a collection of finite objects (numbers, graphs, vectors, sets, etc. ) satisfies certain restrictions, how large or how small can it be? For example, how many people can we invite to a party where among each three people there are two who know each other and two who don't know each other? An easy Ramsey-type argument shows that at most five persons can attend such a party. Or, suppose we are given a finite set of nonzero integers, and are asked to mark an as large as possible subset of them under the restriction that the sum of any two marked integers cannot be marked | ||
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Computer science—Mathematics | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Computers | |
650 | 4 | |a Mathematical logic | |
650 | 0 | 7 | |a Extrembedingung |0 (DE-588)4502205-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Extremalproblem |0 (DE-588)4439315-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | 1 | |a Extremalproblem |0 (DE-588)4439315-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 1 | 1 | |a Extrembedingung |0 (DE-588)4502205-7 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642085598 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540663133 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783662046517 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04650-0 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471532 | ||
966 | e | |u https://doi.org/10.1007/978-3-662-04650-0 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182062398177280 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Jukna, Stasys |
author_facet | Jukna, Stasys |
author_role | aut |
author_sort | Jukna, Stasys |
author_variant | s j sj |
building | Verbundindex |
bvnumber | BV047064421 |
classification_rvk | SK 170 SK 890 ST 600 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-3-662-04650-0 (OCoLC)1227481653 (DE-599)BVBBV047064421 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1007/978-3-662-04650-0 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04081nmm a2200697zc 4500</leader><controlfield tag="001">BV047064421</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662046500</subfield><subfield code="9">978-3-662-04650-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04650-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-3-662-04650-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227481653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jukna, Stasys</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extremal Combinatorics</subfield><subfield code="b">With Applications in Computer Science</subfield><subfield code="c">by Stasys Jukna</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 378 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in Theoretical Computer Science. An EATCS Series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Combinatorial mathematics has been pursued since time immemorial, and at a reasonable scientific level at least since Leonhard Euler (1707-1783). It ren dered many services to both pure and applied mathematics. Then along came the prince of computer science with its many mathematical problems and needs - and it was combinatorics that best fitted the glass slipper held out. Moreover, it has been gradually more and more realized that combinatorics has all sorts of deep connections with "mainstream areas" of mathematics, such as algebra, geometry and probability. This is why combinatorics is now apart of the standard mathematics and computer science curriculum. This book is as an introduction to extremal combinatorics - a field of com binatorial mathematics which has undergone aperiod of spectacular growth in recent decades. The word "extremal" comes from the nature of problems this field deals with: if a collection of finite objects (numbers, graphs, vectors, sets, etc. ) satisfies certain restrictions, how large or how small can it be? For example, how many people can we invite to a party where among each three people there are two who know each other and two who don't know each other? An easy Ramsey-type argument shows that at most five persons can attend such a party. Or, suppose we are given a finite set of nonzero integers, and are asked to mark an as large as possible subset of them under the restriction that the sum of any two marked integers cannot be marked</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extrembedingung</subfield><subfield code="0">(DE-588)4502205-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extremalproblem</subfield><subfield code="0">(DE-588)4439315-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Extremalproblem</subfield><subfield code="0">(DE-588)4439315-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Extrembedingung</subfield><subfield code="0">(DE-588)4502205-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642085598</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540663133</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783662046517</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04650-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471532</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-04650-0</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064421 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:22Z |
indexdate | 2024-07-10T09:01:34Z |
institution | BVB |
isbn | 9783662046500 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471532 |
oclc_num | 1227481653 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XVII, 378 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Texts in Theoretical Computer Science. An EATCS Series |
spelling | Jukna, Stasys Verfasser aut Extremal Combinatorics With Applications in Computer Science by Stasys Jukna 1st ed. 2001 Berlin, Heidelberg Springer Berlin Heidelberg 2001 1 Online-Ressource (XVII, 378 p) txt rdacontent c rdamedia cr rdacarrier Texts in Theoretical Computer Science. An EATCS Series Combinatorial mathematics has been pursued since time immemorial, and at a reasonable scientific level at least since Leonhard Euler (1707-1783). It ren dered many services to both pure and applied mathematics. Then along came the prince of computer science with its many mathematical problems and needs - and it was combinatorics that best fitted the glass slipper held out. Moreover, it has been gradually more and more realized that combinatorics has all sorts of deep connections with "mainstream areas" of mathematics, such as algebra, geometry and probability. This is why combinatorics is now apart of the standard mathematics and computer science curriculum. This book is as an introduction to extremal combinatorics - a field of com binatorial mathematics which has undergone aperiod of spectacular growth in recent decades. The word "extremal" comes from the nature of problems this field deals with: if a collection of finite objects (numbers, graphs, vectors, sets, etc. ) satisfies certain restrictions, how large or how small can it be? For example, how many people can we invite to a party where among each three people there are two who know each other and two who don't know each other? An easy Ramsey-type argument shows that at most five persons can attend such a party. Or, suppose we are given a finite set of nonzero integers, and are asked to mark an as large as possible subset of them under the restriction that the sum of any two marked integers cannot be marked Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Mathematical Modeling and Industrial Mathematics Combinatorics Theory of Computation Mathematical Logic and Foundations Computer science—Mathematics Probabilities Mathematical models Computers Mathematical logic Extrembedingung (DE-588)4502205-7 gnd rswk-swf Extremalproblem (DE-588)4439315-5 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Kombinatorik (DE-588)4031824-2 s Extremalproblem (DE-588)4439315-5 s DE-604 Extrembedingung (DE-588)4502205-7 s Erscheint auch als Druck-Ausgabe 9783642085598 Erscheint auch als Druck-Ausgabe 9783540663133 Erscheint auch als Druck-Ausgabe 9783662046517 https://doi.org/10.1007/978-3-662-04650-0 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Jukna, Stasys Extremal Combinatorics With Applications in Computer Science Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Mathematical Modeling and Industrial Mathematics Combinatorics Theory of Computation Mathematical Logic and Foundations Computer science—Mathematics Probabilities Mathematical models Computers Mathematical logic Extrembedingung (DE-588)4502205-7 gnd Extremalproblem (DE-588)4439315-5 gnd Kombinatorik (DE-588)4031824-2 gnd |
subject_GND | (DE-588)4502205-7 (DE-588)4439315-5 (DE-588)4031824-2 |
title | Extremal Combinatorics With Applications in Computer Science |
title_auth | Extremal Combinatorics With Applications in Computer Science |
title_exact_search | Extremal Combinatorics With Applications in Computer Science |
title_exact_search_txtP | Extremal Combinatorics With Applications in Computer Science |
title_full | Extremal Combinatorics With Applications in Computer Science by Stasys Jukna |
title_fullStr | Extremal Combinatorics With Applications in Computer Science by Stasys Jukna |
title_full_unstemmed | Extremal Combinatorics With Applications in Computer Science by Stasys Jukna |
title_short | Extremal Combinatorics |
title_sort | extremal combinatorics with applications in computer science |
title_sub | With Applications in Computer Science |
topic | Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Mathematical Modeling and Industrial Mathematics Combinatorics Theory of Computation Mathematical Logic and Foundations Computer science—Mathematics Probabilities Mathematical models Computers Mathematical logic Extrembedingung (DE-588)4502205-7 gnd Extremalproblem (DE-588)4439315-5 gnd Kombinatorik (DE-588)4031824-2 gnd |
topic_facet | Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Mathematical Modeling and Industrial Mathematics Combinatorics Theory of Computation Mathematical Logic and Foundations Computer science—Mathematics Probabilities Mathematical models Computers Mathematical logic Extrembedingung Extremalproblem Kombinatorik |
url | https://doi.org/10.1007/978-3-662-04650-0 |
work_keys_str_mv | AT juknastasys extremalcombinatoricswithapplicationsincomputerscience |