Number Theory for Computing:
Mathematicians do not study objects, but relations among objectsj they are indifferent to the replacement of objects by others as long as relations do not change. Matter is not important, only form interests them. HENRI POINCARE (1854-1912) Computer scientists working on algorithms for factorization...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Ausgabe: | 1st ed. 2000 |
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | Mathematicians do not study objects, but relations among objectsj they are indifferent to the replacement of objects by others as long as relations do not change. Matter is not important, only form interests them. HENRI POINCARE (1854-1912) Computer scientists working on algorithms for factorization would be well advised to brush up on their number theory. IAN STEWART [219] The theory of numbers, in mathematics, is primarily the theory of the prop erties of integers (i.e., the whole numbers), particularly the positive integers. For example, Euclid proved 2000 years aga in his Elements that there exist infinitely many prime numbers. The subject has long been considered as the purest branch of mathematics, with very few applications to other areas. How ever, recent years have seen considerable increase in interest in several central topics of number theory, precisely because of their importance and applica tions in other areas, particularly in computing and information technology |
Beschreibung: | 1 Online-Ressource (XVIII, 381 p) |
ISBN: | 9783662040539 |
DOI: | 10.1007/978-3-662-04053-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064316 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662040539 |9 978-3-662-04053-9 | ||
024 | 7 | |a 10.1007/978-3-662-04053-9 |2 doi | |
035 | |a (ZDB-2-SCS)978-3-662-04053-9 | ||
035 | |a (OCoLC)1227480058 | ||
035 | |a (DE-599)BVBBV047064316 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 005.1 |2 23 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Yan, Song Y. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Number Theory for Computing |c by Song Y. Yan |
250 | |a 1st ed. 2000 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XVIII, 381 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Mathematicians do not study objects, but relations among objectsj they are indifferent to the replacement of objects by others as long as relations do not change. Matter is not important, only form interests them. HENRI POINCARE (1854-1912) Computer scientists working on algorithms for factorization would be well advised to brush up on their number theory. IAN STEWART [219] The theory of numbers, in mathematics, is primarily the theory of the prop erties of integers (i.e., the whole numbers), particularly the positive integers. For example, Euclid proved 2000 years aga in his Elements that there exist infinitely many prime numbers. The subject has long been considered as the purest branch of mathematics, with very few applications to other areas. How ever, recent years have seen considerable increase in interest in several central topics of number theory, precisely because of their importance and applica tions in other areas, particularly in computing and information technology | ||
650 | 4 | |a Algorithm Analysis and Problem Complexity | |
650 | 4 | |a Cryptology | |
650 | 4 | |a Coding and Information Theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Symbolic and Algebraic Manipulation | |
650 | 4 | |a Electronics and Microelectronics, Instrumentation | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Data encryption (Computer science) | |
650 | 4 | |a Coding theory | |
650 | 4 | |a Information theory | |
650 | 4 | |a Number theory | |
650 | 4 | |a Computer science—Mathematics | |
650 | 4 | |a Electronics | |
650 | 4 | |a Microelectronics | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmische Zahlentheorie |0 (DE-588)4314054-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elementare Zahlentheorie |0 (DE-588)4294368-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algorithmische Zahlentheorie |0 (DE-588)4314054-3 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Elementare Zahlentheorie |0 (DE-588)4294368-1 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783662040553 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783662040546 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540654728 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04053-9 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471428 | ||
966 | e | |u https://doi.org/10.1007/978-3-662-04053-9 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182062188462080 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Yan, Song Y. |
author_facet | Yan, Song Y. |
author_role | aut |
author_sort | Yan, Song Y. |
author_variant | s y y sy syy |
building | Verbundindex |
bvnumber | BV047064316 |
classification_rvk | SK 180 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-3-662-04053-9 (OCoLC)1227480058 (DE-599)BVBBV047064316 |
dewey-full | 005.1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.1 |
dewey-search | 005.1 |
dewey-sort | 15.1 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1007/978-3-662-04053-9 |
edition | 1st ed. 2000 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03585nmm a2200709zc 4500</leader><controlfield tag="001">BV047064316</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662040539</subfield><subfield code="9">978-3-662-04053-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04053-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-3-662-04053-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227480058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064316</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yan, Song Y.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Number Theory for Computing</subfield><subfield code="c">by Song Y. Yan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 381 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematicians do not study objects, but relations among objectsj they are indifferent to the replacement of objects by others as long as relations do not change. Matter is not important, only form interests them. HENRI POINCARE (1854-1912) Computer scientists working on algorithms for factorization would be well advised to brush up on their number theory. IAN STEWART [219] The theory of numbers, in mathematics, is primarily the theory of the prop erties of integers (i.e., the whole numbers), particularly the positive integers. For example, Euclid proved 2000 years aga in his Elements that there exist infinitely many prime numbers. The subject has long been considered as the purest branch of mathematics, with very few applications to other areas. How ever, recent years have seen considerable increase in interest in several central topics of number theory, precisely because of their importance and applica tions in other areas, particularly in computing and information technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm Analysis and Problem Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryptology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coding and Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronics and Microelectronics, Instrumentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data encryption (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coding theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microelectronics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmische Zahlentheorie</subfield><subfield code="0">(DE-588)4314054-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elementare Zahlentheorie</subfield><subfield code="0">(DE-588)4294368-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algorithmische Zahlentheorie</subfield><subfield code="0">(DE-588)4314054-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elementare Zahlentheorie</subfield><subfield code="0">(DE-588)4294368-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783662040553</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783662040546</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540654728</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04053-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471428</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-04053-9</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064316 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:22Z |
indexdate | 2024-07-10T09:01:34Z |
institution | BVB |
isbn | 9783662040539 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471428 |
oclc_num | 1227480058 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XVIII, 381 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Yan, Song Y. Verfasser aut Number Theory for Computing by Song Y. Yan 1st ed. 2000 Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XVIII, 381 p) txt rdacontent c rdamedia cr rdacarrier Mathematicians do not study objects, but relations among objectsj they are indifferent to the replacement of objects by others as long as relations do not change. Matter is not important, only form interests them. HENRI POINCARE (1854-1912) Computer scientists working on algorithms for factorization would be well advised to brush up on their number theory. IAN STEWART [219] The theory of numbers, in mathematics, is primarily the theory of the prop erties of integers (i.e., the whole numbers), particularly the positive integers. For example, Euclid proved 2000 years aga in his Elements that there exist infinitely many prime numbers. The subject has long been considered as the purest branch of mathematics, with very few applications to other areas. How ever, recent years have seen considerable increase in interest in several central topics of number theory, precisely because of their importance and applica tions in other areas, particularly in computing and information technology Algorithm Analysis and Problem Complexity Cryptology Coding and Information Theory Number Theory Symbolic and Algebraic Manipulation Electronics and Microelectronics, Instrumentation Algorithms Data encryption (Computer science) Coding theory Information theory Number theory Computer science—Mathematics Electronics Microelectronics Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Algorithmische Zahlentheorie (DE-588)4314054-3 gnd rswk-swf Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Elementare Zahlentheorie (DE-588)4294368-1 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Datenverarbeitung (DE-588)4011152-0 s DE-604 Algorithmische Zahlentheorie (DE-588)4314054-3 s Elementare Zahlentheorie (DE-588)4294368-1 s Erscheint auch als Druck-Ausgabe 9783662040553 Erscheint auch als Druck-Ausgabe 9783662040546 Erscheint auch als Druck-Ausgabe 9783540654728 https://doi.org/10.1007/978-3-662-04053-9 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Yan, Song Y. Number Theory for Computing Algorithm Analysis and Problem Complexity Cryptology Coding and Information Theory Number Theory Symbolic and Algebraic Manipulation Electronics and Microelectronics, Instrumentation Algorithms Data encryption (Computer science) Coding theory Information theory Number theory Computer science—Mathematics Electronics Microelectronics Zahlentheorie (DE-588)4067277-3 gnd Algorithmische Zahlentheorie (DE-588)4314054-3 gnd Datenverarbeitung (DE-588)4011152-0 gnd Elementare Zahlentheorie (DE-588)4294368-1 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4314054-3 (DE-588)4011152-0 (DE-588)4294368-1 |
title | Number Theory for Computing |
title_auth | Number Theory for Computing |
title_exact_search | Number Theory for Computing |
title_exact_search_txtP | Number Theory for Computing |
title_full | Number Theory for Computing by Song Y. Yan |
title_fullStr | Number Theory for Computing by Song Y. Yan |
title_full_unstemmed | Number Theory for Computing by Song Y. Yan |
title_short | Number Theory for Computing |
title_sort | number theory for computing |
topic | Algorithm Analysis and Problem Complexity Cryptology Coding and Information Theory Number Theory Symbolic and Algebraic Manipulation Electronics and Microelectronics, Instrumentation Algorithms Data encryption (Computer science) Coding theory Information theory Number theory Computer science—Mathematics Electronics Microelectronics Zahlentheorie (DE-588)4067277-3 gnd Algorithmische Zahlentheorie (DE-588)4314054-3 gnd Datenverarbeitung (DE-588)4011152-0 gnd Elementare Zahlentheorie (DE-588)4294368-1 gnd |
topic_facet | Algorithm Analysis and Problem Complexity Cryptology Coding and Information Theory Number Theory Symbolic and Algebraic Manipulation Electronics and Microelectronics, Instrumentation Algorithms Data encryption (Computer science) Coding theory Information theory Number theory Computer science—Mathematics Electronics Microelectronics Zahlentheorie Algorithmische Zahlentheorie Datenverarbeitung Elementare Zahlentheorie |
url | https://doi.org/10.1007/978-3-662-04053-9 |
work_keys_str_mv | AT yansongy numbertheoryforcomputing |