Synergetic Computers and Cognition: A Top-Down Approach to Neural Nets
This book presents a novel approach to neural nets and thus offers a genuine alternative to the hitherto known neuro-computers. This approach is based on the author's discovery of the profound analogy between pattern recognition and pattern formation in open systems far from equilibrium. Thus t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Ausgabe: | 2nd ed. 2004 |
Schriftenreihe: | Springer Series in Synergetics
50 |
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | This book presents a novel approach to neural nets and thus offers a genuine alternative to the hitherto known neuro-computers. This approach is based on the author's discovery of the profound analogy between pattern recognition and pattern formation in open systems far from equilibrium. Thus the mathematical and conceptual tools of synergetics can be exploited, and the concept of the synergetic computer formulated. A complete and rigorous theory of pattern recognition and learning is presented. The resulting algorithm can be implemented on serial computers or realized by fully parallel nets whereby no spurious states occur. Explicit examples (recognition of faces and city maps) are provided. The recognition process is made invariant with respect to simultaneous translation, rotation, and scaling, and allows the recognition of complex scenes. Oscillations and hysteresis in the perception of ambiguous patterns are treated, as well as the recognition of movement patterns. A comparison between the recognition abilities of humans and the synergetic computer sheds new light on possible models of mental processes. The synergetic computer can also perform logical steps such as the XOR operation. The new edition includes a section on transformation properties of the equations of the synergetic computer and on the invariance properties of the order parameter equations. Further additions are a new section on stereopsis and recent developments in the use of pulse-coupled neural nets for pattern recognition |
Beschreibung: | 1 Online-Ressource (IX, 245 p) |
ISBN: | 9783662101827 |
DOI: | 10.1007/978-3-662-10182-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047064239 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783662101827 |9 978-3-662-10182-7 | ||
024 | 7 | |a 10.1007/978-3-662-10182-7 |2 doi | |
035 | |a (ZDB-2-SCS)978-3-662-10182-7 | ||
035 | |a (OCoLC)1227479455 | ||
035 | |a (DE-599)BVBBV047064239 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a ST 150 |0 (DE-625)143594: |2 rvk | ||
084 | |a ST 152 |0 (DE-625)143596: |2 rvk | ||
084 | |a ST 200 |0 (DE-625)143611: |2 rvk | ||
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
100 | 1 | |a Haken, Hermann |e Verfasser |4 aut | |
245 | 1 | 0 | |a Synergetic Computers and Cognition |b A Top-Down Approach to Neural Nets |c by Hermann Haken |
250 | |a 2nd ed. 2004 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (IX, 245 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Synergetics |v 50 | |
520 | |a This book presents a novel approach to neural nets and thus offers a genuine alternative to the hitherto known neuro-computers. This approach is based on the author's discovery of the profound analogy between pattern recognition and pattern formation in open systems far from equilibrium. Thus the mathematical and conceptual tools of synergetics can be exploited, and the concept of the synergetic computer formulated. A complete and rigorous theory of pattern recognition and learning is presented. The resulting algorithm can be implemented on serial computers or realized by fully parallel nets whereby no spurious states occur. Explicit examples (recognition of faces and city maps) are provided. The recognition process is made invariant with respect to simultaneous translation, rotation, and scaling, and allows the recognition of complex scenes. Oscillations and hysteresis in the perception of ambiguous patterns are treated, as well as the recognition of movement patterns. A comparison between the recognition abilities of humans and the synergetic computer sheds new light on possible models of mental processes. The synergetic computer can also perform logical steps such as the XOR operation. The new edition includes a section on transformation properties of the equations of the synergetic computer and on the invariance properties of the order parameter equations. Further additions are a new section on stereopsis and recent developments in the use of pulse-coupled neural nets for pattern recognition | ||
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Complex Systems | |
650 | 4 | |a Pattern Recognition | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Statistical Physics and Dynamical Systems | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a Pattern recognition | |
650 | 0 | 7 | |a Synergetik |0 (DE-588)4058755-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neurocomputer |0 (DE-588)4200446-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computer |0 (DE-588)4070083-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computer |0 (DE-588)4070083-5 |D s |
689 | 0 | 1 | |a Synergetik |0 (DE-588)4058755-1 |D s |
689 | 0 | 2 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Neurocomputer |0 (DE-588)4200446-9 |D s |
689 | 1 | 1 | |a Synergetik |0 (DE-588)4058755-1 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642075735 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540421634 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783662101834 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-10182-7 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471351 | ||
966 | e | |u https://doi.org/10.1007/978-3-662-10182-7 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182062007058432 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Haken, Hermann |
author_facet | Haken, Hermann |
author_role | aut |
author_sort | Haken, Hermann |
author_variant | h h hh |
building | Verbundindex |
bvnumber | BV047064239 |
classification_rvk | ST 150 ST 152 ST 200 ST 285 ST 300 UG 3900 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-3-662-10182-7 (OCoLC)1227479455 (DE-599)BVBBV047064239 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Physik Informatik |
discipline_str_mv | Physik Informatik |
doi_str_mv | 10.1007/978-3-662-10182-7 |
edition | 2nd ed. 2004 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04174nmm a2200721zcb4500</leader><controlfield tag="001">BV047064239</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662101827</subfield><subfield code="9">978-3-662-10182-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-10182-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-3-662-10182-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227479455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064239</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 150</subfield><subfield code="0">(DE-625)143594:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 152</subfield><subfield code="0">(DE-625)143596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 200</subfield><subfield code="0">(DE-625)143611:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haken, Hermann</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synergetic Computers and Cognition</subfield><subfield code="b">A Top-Down Approach to Neural Nets</subfield><subfield code="c">by Hermann Haken</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed. 2004</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 245 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Synergetics</subfield><subfield code="v">50</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a novel approach to neural nets and thus offers a genuine alternative to the hitherto known neuro-computers. This approach is based on the author's discovery of the profound analogy between pattern recognition and pattern formation in open systems far from equilibrium. Thus the mathematical and conceptual tools of synergetics can be exploited, and the concept of the synergetic computer formulated. A complete and rigorous theory of pattern recognition and learning is presented. The resulting algorithm can be implemented on serial computers or realized by fully parallel nets whereby no spurious states occur. Explicit examples (recognition of faces and city maps) are provided. The recognition process is made invariant with respect to simultaneous translation, rotation, and scaling, and allows the recognition of complex scenes. Oscillations and hysteresis in the perception of ambiguous patterns are treated, as well as the recognition of movement patterns. A comparison between the recognition abilities of humans and the synergetic computer sheds new light on possible models of mental processes. The synergetic computer can also perform logical steps such as the XOR operation. The new edition includes a section on transformation properties of the equations of the synergetic computer and on the invariance properties of the order parameter equations. Further additions are a new section on stereopsis and recent developments in the use of pulse-coupled neural nets for pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics and Dynamical Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Synergetik</subfield><subfield code="0">(DE-588)4058755-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neurocomputer</subfield><subfield code="0">(DE-588)4200446-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Synergetik</subfield><subfield code="0">(DE-588)4058755-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Neurocomputer</subfield><subfield code="0">(DE-588)4200446-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Synergetik</subfield><subfield code="0">(DE-588)4058755-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642075735</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540421634</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783662101834</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-10182-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471351</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-10182-7</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064239 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:22Z |
indexdate | 2024-07-10T09:01:34Z |
institution | BVB |
isbn | 9783662101827 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471351 |
oclc_num | 1227479455 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (IX, 245 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Synergetics |
spelling | Haken, Hermann Verfasser aut Synergetic Computers and Cognition A Top-Down Approach to Neural Nets by Hermann Haken 2nd ed. 2004 Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (IX, 245 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Synergetics 50 This book presents a novel approach to neural nets and thus offers a genuine alternative to the hitherto known neuro-computers. This approach is based on the author's discovery of the profound analogy between pattern recognition and pattern formation in open systems far from equilibrium. Thus the mathematical and conceptual tools of synergetics can be exploited, and the concept of the synergetic computer formulated. A complete and rigorous theory of pattern recognition and learning is presented. The resulting algorithm can be implemented on serial computers or realized by fully parallel nets whereby no spurious states occur. Explicit examples (recognition of faces and city maps) are provided. The recognition process is made invariant with respect to simultaneous translation, rotation, and scaling, and allows the recognition of complex scenes. Oscillations and hysteresis in the perception of ambiguous patterns are treated, as well as the recognition of movement patterns. A comparison between the recognition abilities of humans and the synergetic computer sheds new light on possible models of mental processes. The synergetic computer can also perform logical steps such as the XOR operation. The new edition includes a section on transformation properties of the equations of the synergetic computer and on the invariance properties of the order parameter equations. Further additions are a new section on stereopsis and recent developments in the use of pulse-coupled neural nets for pattern recognition Artificial Intelligence Complex Systems Pattern Recognition Statistical Physics and Dynamical Systems Artificial intelligence Statistical physics Dynamical systems Pattern recognition Synergetik (DE-588)4058755-1 gnd rswk-swf Neurocomputer (DE-588)4200446-9 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Computer (DE-588)4070083-5 gnd rswk-swf Computer (DE-588)4070083-5 s Synergetik (DE-588)4058755-1 s Neuronales Netz (DE-588)4226127-2 s DE-604 Neurocomputer (DE-588)4200446-9 s Erscheint auch als Druck-Ausgabe 9783642075735 Erscheint auch als Druck-Ausgabe 9783540421634 Erscheint auch als Druck-Ausgabe 9783662101834 https://doi.org/10.1007/978-3-662-10182-7 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Haken, Hermann Synergetic Computers and Cognition A Top-Down Approach to Neural Nets Artificial Intelligence Complex Systems Pattern Recognition Statistical Physics and Dynamical Systems Artificial intelligence Statistical physics Dynamical systems Pattern recognition Synergetik (DE-588)4058755-1 gnd Neurocomputer (DE-588)4200446-9 gnd Neuronales Netz (DE-588)4226127-2 gnd Computer (DE-588)4070083-5 gnd |
subject_GND | (DE-588)4058755-1 (DE-588)4200446-9 (DE-588)4226127-2 (DE-588)4070083-5 |
title | Synergetic Computers and Cognition A Top-Down Approach to Neural Nets |
title_auth | Synergetic Computers and Cognition A Top-Down Approach to Neural Nets |
title_exact_search | Synergetic Computers and Cognition A Top-Down Approach to Neural Nets |
title_exact_search_txtP | Synergetic Computers and Cognition A Top-Down Approach to Neural Nets |
title_full | Synergetic Computers and Cognition A Top-Down Approach to Neural Nets by Hermann Haken |
title_fullStr | Synergetic Computers and Cognition A Top-Down Approach to Neural Nets by Hermann Haken |
title_full_unstemmed | Synergetic Computers and Cognition A Top-Down Approach to Neural Nets by Hermann Haken |
title_short | Synergetic Computers and Cognition |
title_sort | synergetic computers and cognition a top down approach to neural nets |
title_sub | A Top-Down Approach to Neural Nets |
topic | Artificial Intelligence Complex Systems Pattern Recognition Statistical Physics and Dynamical Systems Artificial intelligence Statistical physics Dynamical systems Pattern recognition Synergetik (DE-588)4058755-1 gnd Neurocomputer (DE-588)4200446-9 gnd Neuronales Netz (DE-588)4226127-2 gnd Computer (DE-588)4070083-5 gnd |
topic_facet | Artificial Intelligence Complex Systems Pattern Recognition Statistical Physics and Dynamical Systems Artificial intelligence Statistical physics Dynamical systems Pattern recognition Synergetik Neurocomputer Neuronales Netz Computer |
url | https://doi.org/10.1007/978-3-662-10182-7 |
work_keys_str_mv | AT hakenhermann synergeticcomputersandcognitionatopdownapproachtoneuralnets |