Statistical and Neural Classifiers: An Integrated Approach to Design
Automatic (machine) recognition, description, classification, and groupings of patterns are important problems in a variety of engineering and scientific disciplines such as biology, psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing. Given a pattern, its r...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2001
|
Ausgabe: | 1st ed. 2001 |
Schriftenreihe: | Advances in Computer Vision and Pattern Recognition
|
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | Automatic (machine) recognition, description, classification, and groupings of patterns are important problems in a variety of engineering and scientific disciplines such as biology, psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing. Given a pattern, its recognition/classification may consist of one of the following two tasks: (1) supervised classification (also called discriminant analysis); the input pattern is assigned to one of several predefined classes, (2) unsupervised classification (also called clustering); no pattern classes are defined a priori and patterns are grouped into clusters based on their similarity. Interest in the area of pattern recognition has been renewed recently due to emerging applications which are not only challenging but also computationally more demanding (e. g. , bioinformatics, data mining, document classification, and multimedia database retrieval). Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have received increased attention. Neural networks and statistical pattern recognition are two closely related disciplines which share several common research issues. Neural networks have not only provided a variety of novel or supplementary approaches for pattern recognition tasks, but have also offered architectures on which many well-known statistical pattern recognition algorithms can be mapped for efficient (hardware) implementation. On the other hand, neural networks can derive benefit from some well-known results in statistical pattern recognition |
Beschreibung: | 1 Online-Ressource (XXIII, 295 p. 40 illus) |
ISBN: | 9781447103592 |
DOI: | 10.1007/978-1-4471-0359-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064184 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781447103592 |9 978-1-4471-0359-2 | ||
024 | 7 | |a 10.1007/978-1-4471-0359-2 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4471-0359-2 | ||
035 | |a (OCoLC)1227483344 | ||
035 | |a (DE-599)BVBBV047064184 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.4 |2 23 | |
100 | 1 | |a Raudys, Sarunas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistical and Neural Classifiers |b An Integrated Approach to Design |c by Sarunas Raudys |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a London |b Springer London |c 2001 | |
300 | |a 1 Online-Ressource (XXIII, 295 p. 40 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Computer Vision and Pattern Recognition | |
520 | |a Automatic (machine) recognition, description, classification, and groupings of patterns are important problems in a variety of engineering and scientific disciplines such as biology, psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing. Given a pattern, its recognition/classification may consist of one of the following two tasks: (1) supervised classification (also called discriminant analysis); the input pattern is assigned to one of several predefined classes, (2) unsupervised classification (also called clustering); no pattern classes are defined a priori and patterns are grouped into clusters based on their similarity. Interest in the area of pattern recognition has been renewed recently due to emerging applications which are not only challenging but also computationally more demanding (e. g. , bioinformatics, data mining, document classification, and multimedia database retrieval). Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have received increased attention. Neural networks and statistical pattern recognition are two closely related disciplines which share several common research issues. Neural networks have not only provided a variety of novel or supplementary approaches for pattern recognition tasks, but have also offered architectures on which many well-known statistical pattern recognition algorithms can be mapped for efficient (hardware) implementation. On the other hand, neural networks can derive benefit from some well-known results in statistical pattern recognition | ||
650 | 4 | |a Pattern Recognition | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Pattern recognition | |
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 1 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |D s |
689 | 0 | 2 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 3 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781447110712 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781447103608 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781852332976 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0359-2 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471296 | ||
966 | e | |u https://doi.org/10.1007/978-1-4471-0359-2 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182061869694976 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Raudys, Sarunas |
author_facet | Raudys, Sarunas |
author_role | aut |
author_sort | Raudys, Sarunas |
author_variant | s r sr |
building | Verbundindex |
bvnumber | BV047064184 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4471-0359-2 (OCoLC)1227483344 (DE-599)BVBBV047064184 |
dewey-full | 006.4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4 |
dewey-search | 006.4 |
dewey-sort | 16.4 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4471-0359-2 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03928nmm a2200565zc 4500</leader><controlfield tag="001">BV047064184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447103592</subfield><subfield code="9">978-1-4471-0359-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0359-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4471-0359-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227483344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raudys, Sarunas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical and Neural Classifiers</subfield><subfield code="b">An Integrated Approach to Design</subfield><subfield code="c">by Sarunas Raudys</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 295 p. 40 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Computer Vision and Pattern Recognition</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Automatic (machine) recognition, description, classification, and groupings of patterns are important problems in a variety of engineering and scientific disciplines such as biology, psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing. Given a pattern, its recognition/classification may consist of one of the following two tasks: (1) supervised classification (also called discriminant analysis); the input pattern is assigned to one of several predefined classes, (2) unsupervised classification (also called clustering); no pattern classes are defined a priori and patterns are grouped into clusters based on their similarity. Interest in the area of pattern recognition has been renewed recently due to emerging applications which are not only challenging but also computationally more demanding (e. g. , bioinformatics, data mining, document classification, and multimedia database retrieval). Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have received increased attention. Neural networks and statistical pattern recognition are two closely related disciplines which share several common research issues. Neural networks have not only provided a variety of novel or supplementary approaches for pattern recognition tasks, but have also offered architectures on which many well-known statistical pattern recognition algorithms can be mapped for efficient (hardware) implementation. On the other hand, neural networks can derive benefit from some well-known results in statistical pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern Recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781447110712</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781447103608</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781852332976</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0359-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471296</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-0359-2</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064184 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:22Z |
indexdate | 2024-07-10T09:01:34Z |
institution | BVB |
isbn | 9781447103592 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471296 |
oclc_num | 1227483344 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XXIII, 295 p. 40 illus) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer London |
record_format | marc |
series2 | Advances in Computer Vision and Pattern Recognition |
spelling | Raudys, Sarunas Verfasser aut Statistical and Neural Classifiers An Integrated Approach to Design by Sarunas Raudys 1st ed. 2001 London Springer London 2001 1 Online-Ressource (XXIII, 295 p. 40 illus) txt rdacontent c rdamedia cr rdacarrier Advances in Computer Vision and Pattern Recognition Automatic (machine) recognition, description, classification, and groupings of patterns are important problems in a variety of engineering and scientific disciplines such as biology, psychology, medicine, marketing, computer vision, artificial intelligence, and remote sensing. Given a pattern, its recognition/classification may consist of one of the following two tasks: (1) supervised classification (also called discriminant analysis); the input pattern is assigned to one of several predefined classes, (2) unsupervised classification (also called clustering); no pattern classes are defined a priori and patterns are grouped into clusters based on their similarity. Interest in the area of pattern recognition has been renewed recently due to emerging applications which are not only challenging but also computationally more demanding (e. g. , bioinformatics, data mining, document classification, and multimedia database retrieval). Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have received increased attention. Neural networks and statistical pattern recognition are two closely related disciplines which share several common research issues. Neural networks have not only provided a variety of novel or supplementary approaches for pattern recognition tasks, but have also offered architectures on which many well-known statistical pattern recognition algorithms can be mapped for efficient (hardware) implementation. On the other hand, neural networks can derive benefit from some well-known results in statistical pattern recognition Pattern Recognition Artificial Intelligence Pattern recognition Artificial intelligence Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Automatische Klassifikation (DE-588)4120957-6 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Mustererkennung (DE-588)4040936-3 s Automatische Klassifikation (DE-588)4120957-6 s Neuronales Netz (DE-588)4226127-2 s Statistik (DE-588)4056995-0 s DE-604 Erscheint auch als Druck-Ausgabe 9781447110712 Erscheint auch als Druck-Ausgabe 9781447103608 Erscheint auch als Druck-Ausgabe 9781852332976 https://doi.org/10.1007/978-1-4471-0359-2 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Raudys, Sarunas Statistical and Neural Classifiers An Integrated Approach to Design Pattern Recognition Artificial Intelligence Pattern recognition Artificial intelligence Neuronales Netz (DE-588)4226127-2 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Statistik (DE-588)4056995-0 gnd Mustererkennung (DE-588)4040936-3 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4120957-6 (DE-588)4056995-0 (DE-588)4040936-3 |
title | Statistical and Neural Classifiers An Integrated Approach to Design |
title_auth | Statistical and Neural Classifiers An Integrated Approach to Design |
title_exact_search | Statistical and Neural Classifiers An Integrated Approach to Design |
title_exact_search_txtP | Statistical and Neural Classifiers An Integrated Approach to Design |
title_full | Statistical and Neural Classifiers An Integrated Approach to Design by Sarunas Raudys |
title_fullStr | Statistical and Neural Classifiers An Integrated Approach to Design by Sarunas Raudys |
title_full_unstemmed | Statistical and Neural Classifiers An Integrated Approach to Design by Sarunas Raudys |
title_short | Statistical and Neural Classifiers |
title_sort | statistical and neural classifiers an integrated approach to design |
title_sub | An Integrated Approach to Design |
topic | Pattern Recognition Artificial Intelligence Pattern recognition Artificial intelligence Neuronales Netz (DE-588)4226127-2 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Statistik (DE-588)4056995-0 gnd Mustererkennung (DE-588)4040936-3 gnd |
topic_facet | Pattern Recognition Artificial Intelligence Pattern recognition Artificial intelligence Neuronales Netz Automatische Klassifikation Statistik Mustererkennung |
url | https://doi.org/10.1007/978-1-4471-0359-2 |
work_keys_str_mv | AT raudyssarunas statisticalandneuralclassifiersanintegratedapproachtodesign |