Stochastic Algorithms for Visual Tracking: Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking
A central problem in computer vision is to track objects as they move and deform in a video sequence. Stochastic algorithms -- in particular, particle filters and the Condensation algorithm -- have dramatically enhanced the state of the art for such visual tracking problems in recent years. This boo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2002
|
Ausgabe: | 1st ed. 2002 |
Schriftenreihe: | Distinguished Dissertations
|
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | A central problem in computer vision is to track objects as they move and deform in a video sequence. Stochastic algorithms -- in particular, particle filters and the Condensation algorithm -- have dramatically enhanced the state of the art for such visual tracking problems in recent years. This book presents a unified framework for visual tracking using particle filters, including the new technique of partitioned sampling which can alleviate the "curse of dimensionality" suffered by standard particle filters. The book also introduces the notion of contour likelihood: a collection of models for assessing object shape, colour and motion, which are derived from the statistical properties of image features. Because of their statistical nature, contour likelihoods are ideal for use in stochastic algorithms. A unifying theme of the book is the use of statistics and probability, which enable the final output of the algorithms presented to be interpreted as the computer's "belief" about the state of the world. The book will be of use and interest to students, researchers and practitioners in computer vision, and assumes only an elementary knowledge of probability theory |
Beschreibung: | 1 Online-Ressource (IX, 174 p) |
ISBN: | 9781447106791 |
DOI: | 10.1007/978-1-4471-0679-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064142 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781447106791 |9 978-1-4471-0679-1 | ||
024 | 7 | |a 10.1007/978-1-4471-0679-1 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4471-0679-1 | ||
035 | |a (OCoLC)1227479744 | ||
035 | |a (DE-599)BVBBV047064142 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.6 |2 23 | |
100 | 1 | |a MacCormick, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Algorithms for Visual Tracking |b Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking |c by John MacCormick |
250 | |a 1st ed. 2002 | ||
264 | 1 | |a London |b Springer London |c 2002 | |
300 | |a 1 Online-Ressource (IX, 174 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Distinguished Dissertations | |
520 | |a A central problem in computer vision is to track objects as they move and deform in a video sequence. Stochastic algorithms -- in particular, particle filters and the Condensation algorithm -- have dramatically enhanced the state of the art for such visual tracking problems in recent years. This book presents a unified framework for visual tracking using particle filters, including the new technique of partitioned sampling which can alleviate the "curse of dimensionality" suffered by standard particle filters. The book also introduces the notion of contour likelihood: a collection of models for assessing object shape, colour and motion, which are derived from the statistical properties of image features. Because of their statistical nature, contour likelihoods are ideal for use in stochastic algorithms. A unifying theme of the book is the use of statistics and probability, which enable the final output of the algorithms presented to be interpreted as the computer's "belief" about the state of the world. The book will be of use and interest to students, researchers and practitioners in computer vision, and assumes only an elementary knowledge of probability theory | ||
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Algorithm Analysis and Problem Complexity | |
650 | 4 | |a Optical data processing | |
650 | 4 | |a Algorithms | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781447111764 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781852336011 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781447106807 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0679-1 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471254 | ||
966 | e | |u https://doi.org/10.1007/978-1-4471-0679-1 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182061775323136 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | MacCormick, John |
author_facet | MacCormick, John |
author_role | aut |
author_sort | MacCormick, John |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV047064142 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4471-0679-1 (OCoLC)1227479744 (DE-599)BVBBV047064142 |
dewey-full | 006.6 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.6 |
dewey-search | 006.6 |
dewey-sort | 16.6 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4471-0679-1 |
edition | 1st ed. 2002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02898nmm a2200457zc 4500</leader><controlfield tag="001">BV047064142</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447106791</subfield><subfield code="9">978-1-4471-0679-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0679-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4471-0679-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227479744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064142</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">MacCormick, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Algorithms for Visual Tracking</subfield><subfield code="b">Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking</subfield><subfield code="c">by John MacCormick</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2002</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 174 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Distinguished Dissertations</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A central problem in computer vision is to track objects as they move and deform in a video sequence. Stochastic algorithms -- in particular, particle filters and the Condensation algorithm -- have dramatically enhanced the state of the art for such visual tracking problems in recent years. This book presents a unified framework for visual tracking using particle filters, including the new technique of partitioned sampling which can alleviate the "curse of dimensionality" suffered by standard particle filters. The book also introduces the notion of contour likelihood: a collection of models for assessing object shape, colour and motion, which are derived from the statistical properties of image features. Because of their statistical nature, contour likelihoods are ideal for use in stochastic algorithms. A unifying theme of the book is the use of statistics and probability, which enable the final output of the algorithms presented to be interpreted as the computer's "belief" about the state of the world. The book will be of use and interest to students, researchers and practitioners in computer vision, and assumes only an elementary knowledge of probability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm Analysis and Problem Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781447111764</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781852336011</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781447106807</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0679-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471254</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-0679-1</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064142 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:22Z |
indexdate | 2024-07-10T09:01:34Z |
institution | BVB |
isbn | 9781447106791 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471254 |
oclc_num | 1227479744 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (IX, 174 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer London |
record_format | marc |
series2 | Distinguished Dissertations |
spelling | MacCormick, John Verfasser aut Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking by John MacCormick 1st ed. 2002 London Springer London 2002 1 Online-Ressource (IX, 174 p) txt rdacontent c rdamedia cr rdacarrier Distinguished Dissertations A central problem in computer vision is to track objects as they move and deform in a video sequence. Stochastic algorithms -- in particular, particle filters and the Condensation algorithm -- have dramatically enhanced the state of the art for such visual tracking problems in recent years. This book presents a unified framework for visual tracking using particle filters, including the new technique of partitioned sampling which can alleviate the "curse of dimensionality" suffered by standard particle filters. The book also introduces the notion of contour likelihood: a collection of models for assessing object shape, colour and motion, which are derived from the statistical properties of image features. Because of their statistical nature, contour likelihoods are ideal for use in stochastic algorithms. A unifying theme of the book is the use of statistics and probability, which enable the final output of the algorithms presented to be interpreted as the computer's "belief" about the state of the world. The book will be of use and interest to students, researchers and practitioners in computer vision, and assumes only an elementary knowledge of probability theory Computer Imaging, Vision, Pattern Recognition and Graphics Algorithm Analysis and Problem Complexity Optical data processing Algorithms Erscheint auch als Druck-Ausgabe 9781447111764 Erscheint auch als Druck-Ausgabe 9781852336011 Erscheint auch als Druck-Ausgabe 9781447106807 https://doi.org/10.1007/978-1-4471-0679-1 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | MacCormick, John Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking Computer Imaging, Vision, Pattern Recognition and Graphics Algorithm Analysis and Problem Complexity Optical data processing Algorithms |
title | Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking |
title_auth | Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking |
title_exact_search | Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking |
title_exact_search_txtP | Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking |
title_full | Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking by John MacCormick |
title_fullStr | Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking by John MacCormick |
title_full_unstemmed | Stochastic Algorithms for Visual Tracking Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking by John MacCormick |
title_short | Stochastic Algorithms for Visual Tracking |
title_sort | stochastic algorithms for visual tracking probabilistic modelling and stochastic algorithms for visual localisation and tracking |
title_sub | Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking |
topic | Computer Imaging, Vision, Pattern Recognition and Graphics Algorithm Analysis and Problem Complexity Optical data processing Algorithms |
topic_facet | Computer Imaging, Vision, Pattern Recognition and Graphics Algorithm Analysis and Problem Complexity Optical data processing Algorithms |
url | https://doi.org/10.1007/978-1-4471-0679-1 |
work_keys_str_mv | AT maccormickjohn stochasticalgorithmsforvisualtrackingprobabilisticmodellingandstochasticalgorithmsforvisuallocalisationandtracking |