Can we be wrong?: the problem of textual evidence in a time of data
"This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge elements. Elements in Digital Literary Studies
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment." Klappentext |
Beschreibung: | 78 Seiten Diagramme |
ISBN: | 9781108926201 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047058137 | ||
003 | DE-604 | ||
005 | 20210204 | ||
007 | t | ||
008 | 201210s2020 |||| |||| 00||| eng d | ||
020 | |a 9781108926201 |c pbk |9 978-1-108-92620-1 | ||
035 | |a (OCoLC)1235887140 | ||
035 | |a (DE-599)BVBBV047058137 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
084 | |a ET 760 |0 (DE-625)28031: |2 rvk | ||
100 | 1 | |a Piper, Andrew |d 1973- |e Verfasser |0 (DE-588)139203028 |4 aut | |
245 | 1 | 0 | |a Can we be wrong? |b the problem of textual evidence in a time of data |c Andrew Piper, McGill University |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 78 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge elements. Elements in Digital Literary Studies | |
520 | 3 | |a "This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment." Klappentext | |
650 | 0 | 7 | |a Generalisierung |0 (DE-588)4138130-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Textanalyse |0 (DE-588)4194196-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evidenz |0 (DE-588)4129356-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evidenz |0 (DE-588)4129356-3 |D s |
689 | 0 | 1 | |a Generalisierung |0 (DE-588)4138130-0 |D s |
689 | 0 | 2 | |a Textanalyse |0 (DE-588)4194196-2 |D s |
689 | 0 | 3 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Textanalyse |0 (DE-588)4194196-2 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-92203-6 |
856 | 4 | 2 | |m V:DE-605;X:Imageware |q application/pdf |u http://digitale-objekte.hbz-nrw.de/storage2/2021/01/16/file_4/8982029.pdf |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032465358 |
Datensatz im Suchindex
_version_ | 1804182051393372160 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Piper, Andrew 1973- |
author_GND | (DE-588)139203028 |
author_facet | Piper, Andrew 1973- |
author_role | aut |
author_sort | Piper, Andrew 1973- |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV047058137 |
classification_rvk | ET 760 |
ctrlnum | (OCoLC)1235887140 (DE-599)BVBBV047058137 |
discipline | Sprachwissenschaft Literaturwissenschaft |
discipline_str_mv | Sprachwissenschaft Literaturwissenschaft |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02776nam a2200469 c 4500</leader><controlfield tag="001">BV047058137</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210204 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">201210s2020 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108926201</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-108-92620-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1235887140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047058137</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ET 760</subfield><subfield code="0">(DE-625)28031:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Piper, Andrew</subfield><subfield code="d">1973-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139203028</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can we be wrong?</subfield><subfield code="b">the problem of textual evidence in a time of data</subfield><subfield code="c">Andrew Piper, McGill University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">78 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements. Elements in Digital Literary Studies</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment." Klappentext</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Generalisierung</subfield><subfield code="0">(DE-588)4138130-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Textanalyse</subfield><subfield code="0">(DE-588)4194196-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evidenz</subfield><subfield code="0">(DE-588)4129356-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evidenz</subfield><subfield code="0">(DE-588)4129356-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Generalisierung</subfield><subfield code="0">(DE-588)4138130-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Textanalyse</subfield><subfield code="0">(DE-588)4194196-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Textanalyse</subfield><subfield code="0">(DE-588)4194196-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-92203-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-605;X:Imageware</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://digitale-objekte.hbz-nrw.de/storage2/2021/01/16/file_4/8982029.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032465358</subfield></datafield></record></collection> |
id | DE-604.BV047058137 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:10:38Z |
indexdate | 2024-07-10T09:01:24Z |
institution | BVB |
isbn | 9781108926201 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032465358 |
oclc_num | 1235887140 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 78 Seiten Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements. Elements in Digital Literary Studies |
spelling | Piper, Andrew 1973- Verfasser (DE-588)139203028 aut Can we be wrong? the problem of textual evidence in a time of data Andrew Piper, McGill University Cambridge Cambridge University Press 2020 78 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Cambridge elements. Elements in Digital Literary Studies "This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment." Klappentext Generalisierung (DE-588)4138130-0 gnd rswk-swf Computerunterstütztes Verfahren (DE-588)4139030-1 gnd rswk-swf Textanalyse (DE-588)4194196-2 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Evidenz (DE-588)4129356-3 gnd rswk-swf Evidenz (DE-588)4129356-3 s Generalisierung (DE-588)4138130-0 s Textanalyse (DE-588)4194196-2 s Computerunterstütztes Verfahren (DE-588)4139030-1 s DE-604 Maschinelles Lernen (DE-588)4193754-5 s Erscheint auch als Online-Ausgabe 978-1-108-92203-6 V:DE-605;X:Imageware application/pdf http://digitale-objekte.hbz-nrw.de/storage2/2021/01/16/file_4/8982029.pdf Inhaltsverzeichnis |
spellingShingle | Piper, Andrew 1973- Can we be wrong? the problem of textual evidence in a time of data Generalisierung (DE-588)4138130-0 gnd Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Textanalyse (DE-588)4194196-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Evidenz (DE-588)4129356-3 gnd |
subject_GND | (DE-588)4138130-0 (DE-588)4139030-1 (DE-588)4194196-2 (DE-588)4193754-5 (DE-588)4129356-3 |
title | Can we be wrong? the problem of textual evidence in a time of data |
title_auth | Can we be wrong? the problem of textual evidence in a time of data |
title_exact_search | Can we be wrong? the problem of textual evidence in a time of data |
title_exact_search_txtP | Can we be wrong? the problem of textual evidence in a time of data |
title_full | Can we be wrong? the problem of textual evidence in a time of data Andrew Piper, McGill University |
title_fullStr | Can we be wrong? the problem of textual evidence in a time of data Andrew Piper, McGill University |
title_full_unstemmed | Can we be wrong? the problem of textual evidence in a time of data Andrew Piper, McGill University |
title_short | Can we be wrong? |
title_sort | can we be wrong the problem of textual evidence in a time of data |
title_sub | the problem of textual evidence in a time of data |
topic | Generalisierung (DE-588)4138130-0 gnd Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Textanalyse (DE-588)4194196-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Evidenz (DE-588)4129356-3 gnd |
topic_facet | Generalisierung Computerunterstütztes Verfahren Textanalyse Maschinelles Lernen Evidenz |
url | http://digitale-objekte.hbz-nrw.de/storage2/2021/01/16/file_4/8982029.pdf |
work_keys_str_mv | AT piperandrew canwebewrongtheproblemoftextualevidenceinatimeofdata |