Hyperparameter optimization in machine learning: make your machine learning and deep learning models more efficient
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress
[2021]
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FAW02 FHA01 FHD01 FHI01 FHM01 FHN01 FHO01 FHR01 FKE01 FLA01 FWS01 FWS02 HTW01 UBW01 Volltext |
Beschreibung: | 1 Online-Ressource (XIX, 166 Seiten) 53 Illustrationen, 4 Illustrationen (farbig) |
ISBN: | 9781484265796 |
DOI: | 10.1007/978-1-4842-6579-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047047952 | ||
003 | DE-604 | ||
005 | 20230214 | ||
007 | cr|uuu---uuuuu | ||
008 | 201207s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781484265796 |c Online |9 978-1-4842-6579-6 | ||
024 | 7 | |a 10.1007/978-1-4842-6579-6 |2 doi | |
035 | |a (ZDB-2-CWD)9781484265796 | ||
035 | |a (OCoLC)1226705860 | ||
035 | |a (DE-599)BVBBV047047952 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-863 |a DE-1050 |a DE-1043 |a DE-862 |a DE-M347 |a DE-573 |a DE-1046 |a DE-1047 |a DE-188 |a DE-898 |a DE-859 |a DE-523 |a DE-92 |a DE-20 |a DE-Aug4 |a DE-1051 |a DE-860 |a DE-83 | ||
082 | 0 | |a 006.31 |2 23 | |
100 | 1 | |a Agrawal, Tanay |e Verfasser |0 (DE-588)1226107362 |4 aut | |
245 | 1 | 0 | |a Hyperparameter optimization in machine learning |b make your machine learning and deep learning models more efficient |c Tanay Agrawal |
264 | 1 | |a Berkeley, CA |b Apress |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (XIX, 166 Seiten) |b 53 Illustrationen, 4 Illustrationen (farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Machine Learning | |
650 | 4 | |a Python | |
650 | 4 | |a Open Source | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Open source software | |
650 | 4 | |a Computer programming | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-6578-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-6580-2 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4842-6579-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD | ||
940 | 1 | |q ZDB-2-CWD_2021 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032455354 | ||
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FAB01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FAW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FAW02 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FHA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FHD01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FHI01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FHM01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FHN01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FHO01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FHR01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FKE01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FLA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FWS01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l FWS02 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l HTW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6579-6 |l UBW01 |p ZDB-2-CWD |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 862611 |
---|---|
_version_ | 1806193897048637440 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Agrawal, Tanay |
author_GND | (DE-588)1226107362 |
author_facet | Agrawal, Tanay |
author_role | aut |
author_sort | Agrawal, Tanay |
author_variant | t a ta |
building | Verbundindex |
bvnumber | BV047047952 |
collection | ZDB-2-CWD |
ctrlnum | (ZDB-2-CWD)9781484265796 (OCoLC)1226705860 (DE-599)BVBBV047047952 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4842-6579-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03506nmm a2200697zc 4500</leader><controlfield tag="001">BV047047952</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201207s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484265796</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-6579-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-6579-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484265796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1226705860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047047952</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agrawal, Tanay</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1226107362</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperparameter optimization in machine learning</subfield><subfield code="b">make your machine learning and deep learning models more efficient</subfield><subfield code="c">Tanay Agrawal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 166 Seiten)</subfield><subfield code="b">53 Illustrationen, 4 Illustrationen (farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open source software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-6578-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-6580-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2021</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032455354</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FHO01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6579-6</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047047952 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:07:25Z |
indexdate | 2024-08-01T15:58:49Z |
institution | BVB |
isbn | 9781484265796 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032455354 |
oclc_num | 1226705860 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-1050 DE-1043 DE-862 DE-BY-FWS DE-M347 DE-573 DE-1046 DE-1047 DE-188 DE-898 DE-BY-UBR DE-859 DE-523 DE-92 DE-20 DE-Aug4 DE-1051 DE-860 DE-83 |
owner_facet | DE-863 DE-BY-FWS DE-1050 DE-1043 DE-862 DE-BY-FWS DE-M347 DE-573 DE-1046 DE-1047 DE-188 DE-898 DE-BY-UBR DE-859 DE-523 DE-92 DE-20 DE-Aug4 DE-1051 DE-860 DE-83 |
physical | 1 Online-Ressource (XIX, 166 Seiten) 53 Illustrationen, 4 Illustrationen (farbig) |
psigel | ZDB-2-CWD ZDB-2-CWD_2021 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Apress |
record_format | marc |
spellingShingle | Agrawal, Tanay Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient Machine Learning Python Open Source Machine learning Python (Computer program language) Open source software Computer programming Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4434275-5 |
title | Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient |
title_auth | Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient |
title_exact_search | Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient |
title_exact_search_txtP | Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient |
title_full | Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient Tanay Agrawal |
title_fullStr | Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient Tanay Agrawal |
title_full_unstemmed | Hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient Tanay Agrawal |
title_short | Hyperparameter optimization in machine learning |
title_sort | hyperparameter optimization in machine learning make your machine learning and deep learning models more efficient |
title_sub | make your machine learning and deep learning models more efficient |
topic | Machine Learning Python Open Source Machine learning Python (Computer program language) Open source software Computer programming Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd |
topic_facet | Machine Learning Python Open Source Machine learning Python (Computer program language) Open source software Computer programming Maschinelles Lernen Python Programmiersprache |
url | https://doi.org/10.1007/978-1-4842-6579-6 |
work_keys_str_mv | AT agrawaltanay hyperparameteroptimizationinmachinelearningmakeyourmachinelearninganddeeplearningmodelsmoreefficient |