Hybrid fiber composites: materials, manufacturing, process engineering
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2020]
|
Schlagworte: | |
Online-Zugang: | Unbekannt Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | xxi, 414 Seiten Illustrationen, Diagramme 25 cm x 17 cm |
ISBN: | 9783527346721 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047044509 | ||
003 | DE-604 | ||
005 | 20210310 | ||
007 | t | ||
008 | 201204s2020 gw a||| |||| 00||| eng d | ||
015 | |a 20,N06 |2 dnb | ||
016 | 7 | |a 1203960840 |2 DE-101 | |
020 | |a 9783527346721 |c Festeinband : EUR 149.00 (DE) (freier Preis) |9 978-3-527-34672-1 | ||
024 | 3 | |a 9783527346721 | |
028 | 5 | 2 | |a 1134672 000 |
035 | |a (OCoLC)1225887490 | ||
035 | |a (DE-599)DNB1203960840 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-1050 |a DE-703 |a DE-384 | ||
084 | |a UQ 8420 |0 (DE-625)146597: |2 rvk | ||
084 | |a ZM 7020 |0 (DE-625)157098: |2 rvk | ||
084 | |a 51.32 |2 bkl | ||
084 | |a 52.82 |2 bkl | ||
084 | |a 51.75 |2 bkl | ||
245 | 1 | 0 | |a Hybrid fiber composites |b materials, manufacturing, process engineering |c edited by Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin, Abdullah M. Asiri |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2020] | |
300 | |a xxi, 414 Seiten |b Illustrationen, Diagramme |c 25 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Faserverstärkung |0 (DE-588)4282525-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faserverbundwerkstoff |0 (DE-588)4134341-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faserverbundbauteil |0 (DE-588)4232654-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hybridwerkstoff |0 (DE-588)4160847-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faserverstärkter Kunststoff |0 (DE-588)4128805-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Faserverstärkung |0 (DE-588)4282525-8 |D s |
689 | 0 | 1 | |a Faserverbundbauteil |0 (DE-588)4232654-0 |D s |
689 | 0 | 2 | |a Faserverstärkter Kunststoff |0 (DE-588)4128805-1 |D s |
689 | 0 | 3 | |a Hybridwerkstoff |0 (DE-588)4160847-1 |D s |
689 | 0 | 4 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |D s |
689 | 1 | 1 | |a Faserverbundwerkstoff |0 (DE-588)4134341-4 |D s |
689 | 1 | 2 | |a Hybridwerkstoff |0 (DE-588)4160847-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Khan, Anish |0 (DE-588)1155752694 |4 edt | |
700 | 1 | |a Rangappa, Sanjay Mavinkere |0 (DE-588)1219460885 |4 edt | |
700 | 1 | |a Jawaid, Mohammad |0 (DE-588)1170179029 |4 edt | |
700 | 0 | |a Suchart Siengchin |0 (DE-588)136810772 |4 edt | |
700 | 1 | |a Asiri, Abdullah Mohamed |d 1966- |0 (DE-588)1138993166 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-82456-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-82458-8 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34672-1 |v 2020-02-05 |x Verlag |3 Unbekannt |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032451525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032451525 |
Datensatz im Suchindex
_version_ | 1811259944269250560 |
---|---|
adam_text |
CONTENTS
ABOUT
THE
EDITORS
XIX
1
NATURAL
AND
SYNTHETIC
FIBERS
FOR
HYBRID
COMPOSITES
1
BRIJESH
GANGIL,
LALIT
RANAKOTI,
SHASHIKANT
VERMA
,
TEJ
SINGH,
AND
SANDEEP
KUMAR
1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.5.1
1.6
INTRODUCTION
1
NATURAL
FIBERS
2
MICROSTRUCTURE
OF
NATURAL
FIBERS
3
NATURAL
FIBER-REINFORCED
POLYMER
COMPOSITES
3
SYNTHETIC
FIBERS
7
GLASS
FIBERS
8
CARBON
FIBERS
8
KEVLAR
OR ARAMID
FIBERS
9
COMPARISON
BETWEEN
NATURAL
AND
SYNTHETIC
FIBERS
9
HYBRID
FIBER-BASED
POLYMER
COMPOSITES
10
APPLICATIONS
11
CONCLUSION
12
REFERENCES
13
2
EFFECT
OF
PROCESS
ENGINEERING
ON
THE
PERFORMANCE
OF
HYBRID
FIBER
COMPOSITES
17
MADHU
PUTTEGOWDA,
YASHAS
GOWDA
THYAVIHALLI
GIRIJAPPA,
SANJAY
MAVINKERE
RANGAPPA,
JYOTISHKUMAR
PARAMESWARANPILLAI,
AND
SUCHART
SIENGCHIN
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
INTRODUCTION
17
FIBERS
18
POLYMERS
20
HYBRID
POLYMER
COMPOSITES
21
FIBER
EXTRACTION
METHODS
22
FIBER
TREATMENTS
22
PROCESSING
METHODS
OF
HYBRID
COMPOSITES
24
PULTRUSION
24
HAND
LAY-UP/WET
LAY-UP
25
VACUUM
BAGGING
25
FILAMENT
WINDING
26
RESIN
TRANSFER
MOLDING
27
VIII
CONTENTS
2.7.6
2.7.7
2.8
COMPRESSION
MOLDING
27
INJECTION
MOLDING
28
APPLICATION
OF
EACH
HYBRID
POLYMER
COMPOSITE
PROCESSING
METHODS
29
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.9
PULTRUSION
29
HAND
LAY-UP
29
VACUUM
BAGGING
32
FILAMENT
WINDING
31
RESIN
TRANSFER
MOLDING
31
COMPRESSION
MOLDING
31
INJECTION
MOLDING
32
CONCLUSION
32
REFERENCES
32
3
MECHANICAL
AND
PHYSICAL
TEST
OF
HYBRID
FIBER
COMPOSITES
41
MOHIT
HEMATH,
ARAL
MOZHI
SELVAN
VARADHAPPAN,
HEMATH
KUMAR
GOVINDARAJULU,
SANJAY
MAVINKERE
RANGAPPA,
SUCHART
SIENGCHIN,
AND
HARINANDAN
KUMAR
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
INTRODUCTION
41
MATERIALS
AND
METHODS
44
MATERIALS
44
EXTRACTION
OF
SUGARCANE
NANOCELLULOSE
FIBER
(SNCF)
44
SYNTHESIS
OF
AL-SIC
NANOPARTICLES
44
FABRICATION
OF
SNCF/AL-SIC
VINYL
ESTER
NANOCOMPOSITES
44
DESIGN
OF
EXPERIMENTS
(DOE)
45
DEVELOPMENT
OF
EXPERIMENTAL
MODELS
AND
OPTIMIZATION
45
CHARACTERIZATION
ON
SNCF/AL-SIC
VINYL
ESTER HYBRID
NANOCOMPOSITES
46
3.2.7.1
3.2.7.2
3.2.7.3
3.2.7.4
3.2.7.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.4.4
3.3.5
3.3.5.1
3.3.5.2
3.3.5.3
FTIR
SPECTRA
AND
XRD
CURVES
46
PHYSICAL
PROPERTIES
47
MECHANICAL
PROPERTIES
47
VISCOELASTIC
PROPERTIES
48
MORPHOLOGICAL
PROPERTIES
48
RESULTS
AND
DISCUSSION
48
OPTIMIZATION
48
MAXIMIZATION
52
FTIR
AND
XRD
CURVES
54
MECHANICAL
PROPERTIES
55
FLEXURAL
PROPERTIES
55
MORPHOLOGICAL
PROPERTIES
57
COMPRESSION
PROPERTIES
58
TENSILE
PROPERTIES
58
VISCOELASTIC
PROPERTIES
58
STORAGE
MODULUS
58
LOSS
MODULUS
60
DAMPING
FACTOR
60
CONTENTS
IX
Z.3.5.4
GLASS
TRANSITION
TEMPERATURE
60
3.3.6
IMPACT STRENGTH
61
3.3.7
VICKERS
HARDNESS
62
3.3.8
PHYSICAL
PROPERTIES
62
3.4
CONCLUSION
63
REFERENCES
63
4
EXPERIMENTAL
INVESTIGATIONS
IN
THE
DRILLING
OF
HYBRID
FIBER
COMPOSITES
69
SATHISH
KUMAR
PALANIAPPAN,
SAMIR
KUMAR
PAL,
RAJASEKAR
RATHANASAMY,
GOBINATH
VELU
KALIYANNAN,
AND
MOGANAPRIYA
CHINNASAMY
4.1
INTRODUCTION
69
4.2
CHARACTERISTICS
OF
DRILLING
70
4.3
HYBRID
FIBER
COMPOSITES
70
4.4
MACHINING
LIMITATION
ON
HYBRID
FIBER
COMPOSITE
DRILLING
71
4.5
INVESTIGATION
OF
HYBRID
FIBER
COMPOSITES
DRILLING
71
4.5.1
CONDITION
FOR
HYBRID
COMPOSITES
DRILL
72
4.5.2
FACTORS
AFFECTING
DRILLING
72
4.5.3
DRILLING
OF
GF-REINFORCED
HYBRID
COMPOSITES
73
4.5.4
SURVEY
ON
NF-REINFORCED
HYBRID
COMPOSITES
DRILLING
75
4.5.5
DRILLING
OF
CF
REINFORCED
HYBRID
COMPOSITES
77
4.6
CONCLUSION
79
REFERENCES
79
5
FRACTURE
ANALYSIS
ON
SILK
AND
GLASS
FIBER-REINFORCED
HYBRID
COMPOSITES
87
GANGAPLARA
BASAVARAJAPPA
MANJUNATHA
AND
KURKI
NAGARAJA
BHARATH
5.1
INTRODUCTION
87
5.2
MATERIALS
AND
METHODS
88
5.2.1
MATERIALS
AND
SPECIMEN
PREPARATION
88
5.2.2
COMPACT
TENSION
SHEAR
(CTS)
TEST
90
5.2.3
SINGLE-EDGE
NOTCHED
BEND
(SENB)
90
5.3
RESULTS
AND
DISCUSSION
92
5.3.1
COMPACT
TENSION
SHEAR
(CTS)
TEST
92
5.3.2
MODE
I,
MODE
II,
AND
MIXED
MODE
FRACTURE
TOUGHNESS
FOR
DIFFERENT
LOADING
ANGLE
93
5.3.3
SINGLE-EDGE
NOTCHED
BEND
(SENB)
93
5.3.4
FRACTURE
TOUGHNESS
OF
SENB
TEST
95
5.4
CONCLUSION
96
REFERENCES
96
6
FAILURE
MECHANISMS
OF
FIBER
COMPOSITES
99
CATALIN
LULIAN
PRUNCU
AND
MARIA-LUMINITA
SCUTARU
6.1
INTRODUCTION
99
6.2
INDUSTRIAL
BENEFITS
AND
APPLICATIONS
100
6.3
MATERIALS
FOR
REINFORCING
104
X
CONTENTS
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.6
6.6.1
6.6.1.1
COMPOSITES
REINFORCED
WITH
CONTINUOUS
FIBERS
104
COMPOSITES
REINFORCED
WITH
DISCONTINUOUS
FIBERS
105
COMPOSITES
REINFORCED
WITH
FILLERS
106
RESIN
TYPE
106
EPOXY
RESINS
106
FORMALDEHYDE
RESINS
107
POLYURETHANE
RESINS
107
POLYESTER
RESINS
108
SILICONE
RESINS
108
INTERFACIAL
OF
COMPOSITE
STRUCTURE
109
MICROMECHANICS
110
MECHANICAL
PROPERTIES
110
COEFFICIENTS
OF
THERMAL
EXPANSION
AND
HEAT
TRANSFER
PROPERTIES
111
6.7
6.8
6.9
SHORT
OVERVIEW
OF
SPECIFIC
FAILURE
MODES
112
FUTURE
PERSPECTIVE
113
CONCLUSIONS
114
REFERENCES
114
7
BALLISTIC
BEHAVIOR
OF
FIBER
COMPOSITES
117
IGNACIO
RUBIO
,
JOSUE
ARANDA
RUIZ,
MARCOS
RODRIGUEZ
MILLAN,
JOSE
ANTONIO
LOYA,
AND
MARTA
MARIA
MOURE
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.3
7.4
INTRODUCTION
117
HIGH-VELOCITY
IMPACT
TEST
119
MATERIAL
119
EXPERIMENTAL
SETUP
119
ANALYSIS
AND
RESULTS
121
BALLISTIC
CURVES
121
FAILURE
MODES
123
BACK-FACE
DISPLACEMENT
123
COMPUTATIONAL
METHODS
124
CONCLUSIONS
126
REFERENCES
127
8
MECHANICAL
BEHAVIOR
OF
SYNTHETIC/NATURAL
FIBERS
IN
HYBRID
COMPOSITES
129
NAVASINGH
RAJESH
JESUDOSS
HYNES,
RAMAKRISHNAN
SANKARANARAYANAN,
JEGADEESAPERUMAL
SENTHIL
KUMAR,
SANJAY
MAVINKERE
RANGAPPA,
AND
SUCHART
SIENGCHIN
8.1
8.2
INTRODUCTION
129
IMPACT
STRENGTH
OF
NATURAL
FIBER
(FLAX),
SYNTHETIC
FIBER
(CARBON),
AND
HYBRID
(CARBON/FLAX)
COMPOSITES
130
8.3
KENAF/ARAMID
(EPOXY)
HYBRID
COMPOSITES
WITH
DIFFERENT
FIBER
ORIENTATION
132
8.4
IMPACT
STRENGTH
OF
CARBON/FLAX
(EPOXY)
HYBRID
COMPOSITES
WITH
DIFFERENT
FIBER
ORIENTATION
134
CONTENTS
XI
8.5
COMPARISON
OF
ABSORBED
IMPACT
ENERGY
OF
DIFFERENT
HYBRID
COMPOSITES
135
8.6
COMPARISON
OF
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
137
8.6.1
TENSILE
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
138
8.6.2
FLEXURAL
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
139
8.6.3
IMPACT
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
140
8.7
SUMMARY
AND
OUTLOOK
141
REFERENCES
143
9
BAST
FIBER-BASED
POLYMER
COMPOSITES
147
SANDEEP
KUMAR,
BRIJESH
GANGIL,
KRISHAN
KANT
SINGH
MER,
MANOJ
KUMAR
GUPTA,
AND
VINAY
KUMAR
PATEL
9.1
INTRODUCTION
147
9.1.1
BAST
FIBER
AS
REINFORCING
MATERIAL
149
9.2
POLYMER
COMPOSITES
REINFORCED
WITH
BAST
FIBERS
149
9.2.1
POLYMER
COMPOSITES
REINFORCED
WITH
FLAX
FIBERS
150
9.2.2
POLYMER
COMPOSITES
REINFORCED
WITH
GREWIA
OPTIVA
FIBER
152
9.2.3
POLYMER
COMPOSITES
REINFORCED
WITH
HEMP
FIBER
155
9.2.4
POLYMER
COMPOSITES
REINFORCED
WITH
NETTLE
FIBER
156
9.2.5
POLYMER
COMPOSITES
REINFORCED
WITH
JUTE
FIBER
158
9.3
APPLICATIONS
OF
POLYMER
COMPOSITES
REINFORCED
WITH
BAST
FIBERS
160
9.4
CONCLUSION
161
REFERENCES
161
10
FLAME-RETARDANT
BALSA
WOOD/GFRP
SANDWICH
COMPOSITES,
MECHANICAL
EVALUATION,
AND
COMPARISONS
WITH
OTHER
SANDWICH
COMPOSITES
169
SUBIN
SHAJI
GEORGE,
VIVEK
ARJUNA,
VENKATA
PRUDHVI
PALLAPOLU
;
AND
PADMANABHAN
KRISHNAN
10.1
INTRODUCTION
169
10.2
LITERATURE
SURVEY
171
10.2.1
SANDWICH
COMPOSITE
STRUCTURE
AND
PROPERTIES
171
10.2.2
KNOWLEDGE
GAINED
FROM
THE
LITERATURE
REVIEW
172
10.2.3
GAPS
IDENTIFIED
FROM
LITERATURE
SURVEY
172
10.2.4
OBJECTIVE
OF
THE
PROJECT
173
10.2.5
MOTIVATION
173
10.3
METHODOLOGY
AND
EXPERIMENTAL
WORK
173
10.3.1
HAND
LAY-UP
PROCEDURE
173
10.3.2
VACUUM
BAGGING
174
10.3.3
TESTING
AND
EVALUATIONS
175
10.3.4
TECHNICAL
SPECIFICATION
177
XII
CONTENTS
10.3.5
DESIGN
APPROACH
DETAILS
177
10.3.6
CODES
AND
STANDARDS
178
10.3.7
FABRICATION
METHODOLOGY
178
10.4
RESULTS
AND
DISCUSSION
179
10.4.1
COMPRESSION
TESTING
179
10.4.1.1
FLATWISE
TRANSVERSE
GRAIN
TEST
179
10.4.1.2
EDGEWISE
TRANSVERSE
GRAIN
COMPRESSION
180
10.4.1.3
EDGEWISE
LONGITUDINAL
GRAIN
COMPRESSION
182
10.4.1.4
DISCUSSION
AND
COMMENT
(COMPRESSION
TEST)
183
10.4.2
THREE-POINT
BENDING
TEST
(FLEXURAL
TEST)
183
10.4.2.1
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
BALSA
WOOD
184
10.4.2.2
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
1:1
184
10.4.2.3
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
2:1
184
10.4.2.4
EXPERIMENTAL
RESULT
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
3
:1
187
10.4.2.5
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
4
:1
187
10.4.2.6
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
5:1
188
10.4.2.7
MEAN,
MINIMUM,
AND
MAXIMUM
MECHANICAL
PROPERTIES
OF
SANDWICH
COMPOSITES
188
10.4.2.8
MECHANICAL
PROPERTIES
OF
SANDWICH
COMPOSITE
FOR
DIFFERENT
CORE
MATERIALS
189
10.4.2.9
DISCUSSION
AND
COMMENTS
(FLEXURAL
TESTING/THREE-POINT
BENDING
TEST)
189
10.4.3
TYPES
AND
MODES
OF
FAILURE
DURING
THE
TEST
ON
SANDWICH
COMPOSITES
190
10.5
CONCLUSIONS
192
10.6
SCOPE
FOR
FUTURE
WORK
193
ACKNOWLEDGMENT
193
LIST
OF
SYMBOLS
AND
ABBREVIATIONS
193
REFERENCES
193
11
BIOCOMPOSITES
REINFORCED
WITH
ANIMAL
AND
REGENERATED
FIBERS
197
MANICKAM
RAMESH,
CHINNAIYAN
DEEPA,
SANJAY
MAVINKERE
RANGAPPA,
AND
SUCHART
SIENGCHIN
11.1
INTRODUCTION
197
11.2
ANIMAL
FIBERS
198
11.2.1
SILK
199
11.2.2
WOOL
200
11.2.3
CHICKEN
FEATHER
201
11.3
REGENERATED
FIBERS
202
11.3.1
LYOCELL
205
CONTENTS
XIII
11.3.2
VISCOSE
206
11.3.3
REGENERATED
KERATIN
FIBERS
207
11.4
INDUSTRIAL
APPLICATIONS
207
11.5
SUMMARY
AND
DISCUSSION
207
11.6
CONCLUSIONS
AND
SCOPE
FOR
FUTURE
RESEARCH
208
REFERENCES
208
12
EFFECT
OF
GLASS
AND
BANANA
FIBER
MAT
ORIENTATION
AND
NUMBER
LAYERS
ON
MECHANICAL
PROPERTIES
OF
HYBRID
COMPOSITES
217
T.P.
SATHISHKUMAR,
S.
RAMAKRISHNAN,
AND
P.
NAVANEETHAKRISHNAN
12.1
INTRODUCTION
217
12.2
MATERIALS
220
12.3
PREPARATION
OF
COMPOSITES
221
12.4
CHARACTERIZATION
222
12.5
RESULTS
AND
DISCUSSION
224
12.5.1
EFFECT
OF
NUMBER
AND
ORIENTATION
OF
LAYERS
ON
TENSILE
PROPERTIES
224
12.5.2
EFFECT
OF
NUMBER
AND
ORIENTATION
OF
LAYERS
ON
FLEXURAL
PROPERTIES
225
12.5.3
EFFECT
OF
NUMBER
AND
ORIENTATION
OF
LAYERS
ON
IMPACT
PROPERTIES
228
12.6
CONCLUSION
229
REFERENCES
230
13
CHARACTERIZATION
OF
MECHANICAL
AND
TRIBOLOGICAL
PROPERTIES
OF
VINYL
ESTER-BASED
HYBRID
GREEN
COMPOSITES
233
B.
SURESHA,
R.
HEMANTH,
AND
P.A.
UDAYA
KUMAR
13.1
INTRODUCTION
233
13.2
MATERIALS
AND
METHODS
237
13.2.1
MATRIX
237
13.2.2
REINFORCEMENTS
238
13.2.2.1
COIR
FIBER
AND
COCONUT
SHELL
POWDER
238
13.2.2.2
ARAMID
FIBER
239
13.2.3
CHEMICAL
TREATMENT
239
13.2.4
FABRICATION
OF
VINYL
ESTER-BASED
HYBRID
COMPOSITES
239
13.3
CHARACTERIZATION
240
13.3.1
PHYSICOMECHANICAL
CHARACTERIZATIONS
240
13.3.1.1
HARDNESS
240
13.3.1.2
TENSILE
TESTING
241
13.3.1.3
FLEXURAL
TESTING
241
13.3.1.4
IMPACT
TESTING
242
13.3.2
WEAR
TESTING
242
13.3.3
FRACTOGRAPHY
ANALYSIS
USING
SCANNING
ELECTRON
MICROSCOPE
243
13.4
SURFACE
TREATMENT
OF
REINFORCEMENTS
244
13.5
RESULTS
AND
DISCUSSION
245
XIV
CONTENTS
13.5.1
HARDNESS
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
245
13.5.2
TENSILE
PROPERTIES
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
246
13.5.2.1
FRACTOGRAPHY
ANALYSIS
247
13.5.3
FLEXURAL
PROPERTIES
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
248
13.5.3.1
FRACTOGRAPHY
ANALYSIS
248
13.5.4
IMPACT
STRENGTH
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
249
13.5.4.1
FRACTOGRAPHY
ANALYSIS
250
13.5.5
TRIBOLOGY
OF
VINYL
ESTER
HYBRID
COMPOSITES
251
13.5.5.1
EFFECT
OF
FIBER
AND
FILLER
ON
COEFFICIENT
OF
FRICTION
252
13.5.5.2
EFFECTS
OF
SLIDING
DISTANCE
AND
APPLIED
LOAD
ON
SPECIFIC
WEAR
RATE
254
13.5.5.3
WORN
SURFACE
MORPHOLOGY
256
13.6
CONCLUSIONS
260
REFERENCES
260
14
THERMOMECHANICAL
CHARACTERIZATION
OF
VACUUM
RESIN
INFUSION-MOLDED
CERAMIC
ROCK-DERIVED
NATURAL
WOOL-REINFORCED
EPOXY
AND
CASHEW
NUT
SHELL
LIQUID-BASED
COMPOSITES
265
NIKUNJ
VIRAMGAMA,
ANMOL
GARG
,
KEVIN
THOMAS
,
AND
PADMANABHAN
KRISHNAN
14.1
INTRODUCTION
265
14.1.1
NATURAL
FIBERS
AS
A
SUBSTITUTE
FOR
SYNTHETIC
FIBERS
265
14.1.2
BIOCOMPOSITES
265
14.1.3
ROCKWOOL
FIBERS
266
14.1.4
COMPOSITES
WITH
ROCKWOOL
FIBER
AS
REINFORCEMENT
266
14.1.5
RESIN
OR
MATRIX
MATERIALS
267
14.1.6
GAPS
IN
THE
LITERATURE
REVIEW
267
14.2
METHODOLOGY
AND
APPROACH
267
14.2.1
FABRICATION
AND
EXPERIMENTATION
268
14.3
RESULTS
AND
DISCUSSION
270
14.3.1
ENERGY-DISPERSIVE
X-RAY
SPECTROSCOPY
(EDS
OF
ROCKWOOL)
270
14.3.2
THERMOGRAVIMETRIC
ANALYSIS
(TGA
OF
ROCKWOOL)
272
14.3.3
DIFFERENTIAL
SCANNING
CALORIMETRY
OF
ROCKWOOL
272
14.3.4
VOLUME
FRACTION
OF
FABRICATED
COMPOSITE
273
14.3.4.1
VOLUME
FRACTION
OF
ROCKWOOL
FOR EPOXY-BASED
COMPOSITE
273
14.3.4.2
VOLUME
FRACTION
OF
ROCKWOOL
FIBER
FOR
CNSL
COMPOSITE
274
14.3.5
EPOXY-BASED
COMPOSITE
TESTS
AND
ANALYSES
274
14.3.5.1
TENSILE
TEST
274
14.3.5.2
COMPRESSION
TEST
280
14.3.5.3
FLEXURE
TEST
284
14.3.6
SCANNING
ELECTRON
MICROSCOPY
(SEM)
ANALYSIS
OF
EPOXY-BASED
COMPOSITES
289
14.3.7
ROCKWOOL/CNSL
COMPOSITE
TEST
RESULTS
294
14.3.7.1
TENSILE
TEST
RESULTS
294
14.3.7.2
COMPRESSION
TEST
RESULTS
297
14.3.7.3
FLEXURE
TEST
RESULTS
299
CONTENTS
XV
14.3.8
SCANNING
ELECTRON
MICROSCOPY
(SEM)
ANALYSIS
OF
THE
CNSL-BASED
COMPOSITE
301
14.3.9
FURTHER
SCOPE
OF
RESEARCH
304
ACKNOWLEDGMENTS
305
REFERENCES
305
15
HYDROGEL
SCAFFOLD-BASED
FIBER
COMPOSITES
FOR
ENGINEERING
APPLICATIONS
307
IKRAM
AHMAD
'
JOSE
HERIBERTO
OLIVEIRA
DO
NASCIMENTO,
SOBIA
TABASSUM,
AMNA
MUMTAZ,
SADIA
KHALID,
AND
AWAIS
AHMAD
15.1
INTRODUCTION
307
15.1.1
HYDROGELS
307
15.1.2
HYDROGELS
AS
COMPARED
TO
GELS
308
15.1.3
CLASSIFICATION
OF
HYDROGELS
308
15.1.3.1
HYDROGEL
ORIGIN
308
15.1.3.2
HYDROGEL
DURABILITY
308
15.1.3.3
HYDROGEL
RESPONSE
TO
ENVIRONMENTAL
STIMULI
309
15.1.4
METHODS OF
PREPARATION
OF
HYDROGELS
309
15.1.4.1
FREE
RADICAL
POLYMERIZATION
309
15.1.4.2
IRRADIATION
CROSS-LINKING
OF
HYDROGEL
POLYMERIC
PRECURSORS
310
15.1.4.3
CHEMICAL
CROSS-LINKING
OF
HYDROGEL
POLYMERIC
PRECURSORS
310
15.1.4.4
PHYSICAL
CROSS-LINKING
OF
HYDROGEL
POLYMERIC
PRECURSORS
310
15.1.5
SCAFFOLD
311
15.1.5.1
BIOCOMPATIBILITY
312
15.1.5.2
BIODEGRADABILITY
312
15.1.5.3
MECHANICAL
PROPERTIES
312
15.1.5.4
STRUCTURE
312
15.1.5.5
NATURE
313
15.2
POTENTIAL
APPLICATIONS
OF
HYDROGELS
AS
SCAFFOLD
IN
BIOMEDICAL
APPLICATION
313
15.2.1
HYDROGEL
AND
TISSUE
ENGINEERING
314
15.2.2
HYDROGELS
AS
CARRIERS
FOR
CELL
TRANSPLANTATION
314
15.2.3
HYDROGELS
AS
A
BARRIER
AGAINST
REST
ENOSIS
314
15.2.4
HYDROGELS
AS
DRUG
DEPOTS
315
15.3
DESIGN
CRITERIA
FOR
HYDROGEL
SCAFFOLDS
IN
TISSUE
ENGINEERING
315
15.3.1
BIODEGRADATION
316
15.3.2
BIOCOMPATIBILITY
316
15.3.3
PORE
SIZE
AND
POROSITY
EXTENT
317
15.3.4
MECHANICAL
CHARACTERISTICS
317
15.3.5
SURFACE
CHARACTERISTICS
317
15.3.6
VASCULARIZATION
318
15.4
HYDROGEL
SCAFFOLD:
A
MAIN
TOOL
FOR
TISSUE
ENGINEERING
318
15.4.1
FABRICATION
OF
HYDROGEL
SCAFFOLDS
FOR
TISSUE
ENGINEERING
318
15.4.1.1
EMULSIFICATION
318
15.4.2
LYOPHILIZATION 319
15.4.2.1
EMULSIFICATION LYOPHILIZATION
320
15.4.2.2
SOLVENT
CASTING
LEACHING
320
XVI
CONTENTS
15.4.2.3
15.4.2.4
15.4.2.5
15.4.2.6
15.4.2.7
15.4.2.8
15.5
15.6
15.6.1
15.6.2
15.6.3
15.7
15.7.1
15.7.2
15.7.3
15.7.4
15.7.5
15.8
15.8.1
15.8.1.1
15.8.1.2
15.8.1.3
15.8.1.4
15.8.1.5
15.8.1.6
15.8.1.7
15.8.1.8
15.8.1.9
15.9
GAS
FOAMING
LEACHING
320
PHOTOLITHOGRAPHY
321
ELECTROSPINNING
321
MICROFLUIDICS
322
MICROMOLDING
322
THREE-DIMENSIONAL
ORGAN/TISSUE
PRINTING
323
HYDROGEL
SCAFFOLDS
FOR
CARDIAC
TISSUE
ENGINEERING
324
HYDROGEL
SCAFFOLD
FABRICATION
FOR
SKIN
REGENERATION
326
MOLDING
SCAFFOLDS
326
NANOFIBER
FABRICATION
SCAFFOLDS
326
THREE-DIMENSIONAL
(3D)
PRINTING
327
OSTEOCHONDRAL
TISSUE
REGENERATION
327
SINGLE-LAYER
GELATINOUS
SCAFFOLDS
327
MULTILAYER
GELATINOUS
SCAFFOLDS
328
GEL/FIBER
SCAFFOLDS
329
FABRICATION
OF
GRADIENT
HYDROGELS
330
FABRICATION
OF
GRADIENT
HYDROGEL/FIBER
COMPOSITES
331
BIOPOLYMER-BASED
HYDROGEL
SYSTEMS
332
POLYSACCHARIDE
HYDROGELS
AS
SCAFFOLDS
332
CHONDROITIN
SULFATE
332
HYALURONIC
ACID
333
CHITOSAN
334
CELLULOSE
DERIVATIVES
335
ALGINATE
336
COLLAGEN
337
GELATIN
337
ELASTIN
339
FIBROIN
339
SUMMARY
340
REFERENCES
340
16
EXPERIMENTAL
ANALYSIS
OF
STYRENE,
PARTICLE
SIZE,
AND
FIBER
CONTENT
IN
THE
MECHANICAL
PROPERTIES
OF
SISAL
FIBER
POWDER
COMPOSITES
351
KATIA
MELO
THIAGO
SANTOS
,
CAROLINY
SANTOS,
RUBENS
FONSECA
,
NESTOR
DANTAS,
AND
MARCOS
AQUINO
16.1
16.2
16.3
16.4
INTRODUCTION
351
MATERIALS
AND
METHODS
352
RESULTS
AND
DISCUSSION
353
CONCLUSIONS
364
ACKNOWLEDGMENTS
364
REFERENCES
365
CONTENTS
XVII
INDEX
405
17
INFLUENCE
OF
FIBER
CONTENT
IN
THE
WATER
ABSORPTION
AND
MECHANICAL
PROPERTIES
OF
SISAL
FIBER
POWDER
COMPOSITES
369
KDTIA
MELO,
THIAGO
SANTOS
;
CAROLINY
SANTOS,
RUBENS
FONSECA,
NESTOR
DONTAS,
AND
MARCOS
AQUINO
17.1
17.2
17.2.1
17.2.2
17.3
17.4
INTRODUCTION
369
MATERIALS
AND
METHODS
370
MECHANICAL
TEST
370
WATER
ABSORPTION
370
RESULTS
AND
DISCUSSION
371
CONCLUSIONS
376
ACKNOWLEDGMENTS
377
REFERENCES
377
18
RECENT
ADVANCES
OF
HYBRID
FIBER
COMPOSITES
FOR
VARIOUS
APPLICATIONS
381
PRAVEEN
KUMAR
ALAGESAN
18.1
18.2
18.3
18.4
18.5
INTRODUCTION
381
WHAT
IS
A
HYBRID
COMPOSITE?
384
HYBRID
BIOCOMPOSITES
386
HYBRID
NANOBIOCOMPOSITES
388
POTENTIAL APPLICATIONS
OF
HYBRID
COMPOSITES
IN
VARIOUS
APPLICATIONS
389
18.5.1
18.5.2
18.5.3
18.5.4
18.6
18.7
AEROSPACE
APPLICATIONS
389
AUTOMOTIVE
APPLICATIONS
391
BALLISTIC
APPLICATIONS
394
IMPACT
LOADING
APPLICATIONS
395
CHALLENGES,
PROSPECTS,
AND
FUTURE
TRENDS
397
CONCLUSIONS
398
ACKNOWLEDGMENTS
398
REFERENCES
398 |
adam_txt |
CONTENTS
ABOUT
THE
EDITORS
XIX
1
NATURAL
AND
SYNTHETIC
FIBERS
FOR
HYBRID
COMPOSITES
1
BRIJESH
GANGIL,
LALIT
RANAKOTI,
SHASHIKANT
VERMA
,
TEJ
SINGH,
AND
SANDEEP
KUMAR
1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.5.1
1.6
INTRODUCTION
1
NATURAL
FIBERS
2
MICROSTRUCTURE
OF
NATURAL
FIBERS
3
NATURAL
FIBER-REINFORCED
POLYMER
COMPOSITES
3
SYNTHETIC
FIBERS
7
GLASS
FIBERS
8
CARBON
FIBERS
8
KEVLAR
OR ARAMID
FIBERS
9
COMPARISON
BETWEEN
NATURAL
AND
SYNTHETIC
FIBERS
9
HYBRID
FIBER-BASED
POLYMER
COMPOSITES
10
APPLICATIONS
11
CONCLUSION
12
REFERENCES
13
2
EFFECT
OF
PROCESS
ENGINEERING
ON
THE
PERFORMANCE
OF
HYBRID
FIBER
COMPOSITES
17
MADHU
PUTTEGOWDA,
YASHAS
GOWDA
THYAVIHALLI
GIRIJAPPA,
SANJAY
MAVINKERE
RANGAPPA,
JYOTISHKUMAR
PARAMESWARANPILLAI,
AND
SUCHART
SIENGCHIN
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
INTRODUCTION
17
FIBERS
18
POLYMERS
20
HYBRID
POLYMER
COMPOSITES
21
FIBER
EXTRACTION
METHODS
22
FIBER
TREATMENTS
22
PROCESSING
METHODS
OF
HYBRID
COMPOSITES
24
PULTRUSION
24
HAND
LAY-UP/WET
LAY-UP
25
VACUUM
BAGGING
25
FILAMENT
WINDING
26
RESIN
TRANSFER
MOLDING
27
VIII
CONTENTS
2.7.6
2.7.7
2.8
COMPRESSION
MOLDING
27
INJECTION
MOLDING
28
APPLICATION
OF
EACH
HYBRID
POLYMER
COMPOSITE
PROCESSING
METHODS
29
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.9
PULTRUSION
29
HAND
LAY-UP
29
VACUUM
BAGGING
32
FILAMENT
WINDING
31
RESIN
TRANSFER
MOLDING
31
COMPRESSION
MOLDING
31
INJECTION
MOLDING
32
CONCLUSION
32
REFERENCES
32
3
MECHANICAL
AND
PHYSICAL
TEST
OF
HYBRID
FIBER
COMPOSITES
41
MOHIT
HEMATH,
ARAL
MOZHI
SELVAN
VARADHAPPAN,
HEMATH
KUMAR
GOVINDARAJULU,
SANJAY
MAVINKERE
RANGAPPA,
SUCHART
SIENGCHIN,
AND
HARINANDAN
KUMAR
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
INTRODUCTION
41
MATERIALS
AND
METHODS
44
MATERIALS
44
EXTRACTION
OF
SUGARCANE
NANOCELLULOSE
FIBER
(SNCF)
44
SYNTHESIS
OF
AL-SIC
NANOPARTICLES
44
FABRICATION
OF
SNCF/AL-SIC
VINYL
ESTER
NANOCOMPOSITES
44
DESIGN
OF
EXPERIMENTS
(DOE)
45
DEVELOPMENT
OF
EXPERIMENTAL
MODELS
AND
OPTIMIZATION
45
CHARACTERIZATION
ON
SNCF/AL-SIC
VINYL
ESTER HYBRID
NANOCOMPOSITES
46
3.2.7.1
3.2.7.2
3.2.7.3
3.2.7.4
3.2.7.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.4.4
3.3.5
3.3.5.1
3.3.5.2
3.3.5.3
FTIR
SPECTRA
AND
XRD
CURVES
46
PHYSICAL
PROPERTIES
47
MECHANICAL
PROPERTIES
47
VISCOELASTIC
PROPERTIES
48
MORPHOLOGICAL
PROPERTIES
48
RESULTS
AND
DISCUSSION
48
OPTIMIZATION
48
MAXIMIZATION
52
FTIR
AND
XRD
CURVES
54
MECHANICAL
PROPERTIES
55
FLEXURAL
PROPERTIES
55
MORPHOLOGICAL
PROPERTIES
57
COMPRESSION
PROPERTIES
58
TENSILE
PROPERTIES
58
VISCOELASTIC
PROPERTIES
58
STORAGE
MODULUS
58
LOSS
MODULUS
60
DAMPING
FACTOR
60
CONTENTS
IX
Z.3.5.4
GLASS
TRANSITION
TEMPERATURE
60
3.3.6
IMPACT STRENGTH
61
3.3.7
VICKERS
HARDNESS
62
3.3.8
PHYSICAL
PROPERTIES
62
3.4
CONCLUSION
63
REFERENCES
63
4
EXPERIMENTAL
INVESTIGATIONS
IN
THE
DRILLING
OF
HYBRID
FIBER
COMPOSITES
69
SATHISH
KUMAR
PALANIAPPAN,
SAMIR
KUMAR
PAL,
RAJASEKAR
RATHANASAMY,
GOBINATH
VELU
KALIYANNAN,
AND
MOGANAPRIYA
CHINNASAMY
4.1
INTRODUCTION
69
4.2
CHARACTERISTICS
OF
DRILLING
70
4.3
HYBRID
FIBER
COMPOSITES
70
4.4
MACHINING
LIMITATION
ON
HYBRID
FIBER
COMPOSITE
DRILLING
71
4.5
INVESTIGATION
OF
HYBRID
FIBER
COMPOSITES
DRILLING
71
4.5.1
CONDITION
FOR
HYBRID
COMPOSITES
DRILL
72
4.5.2
FACTORS
AFFECTING
DRILLING
72
4.5.3
DRILLING
OF
GF-REINFORCED
HYBRID
COMPOSITES
73
4.5.4
SURVEY
ON
NF-REINFORCED
HYBRID
COMPOSITES
DRILLING
75
4.5.5
DRILLING
OF
CF
REINFORCED
HYBRID
COMPOSITES
77
4.6
CONCLUSION
79
REFERENCES
79
5
FRACTURE
ANALYSIS
ON
SILK
AND
GLASS
FIBER-REINFORCED
HYBRID
COMPOSITES
87
GANGAPLARA
BASAVARAJAPPA
MANJUNATHA
AND
KURKI
NAGARAJA
BHARATH
5.1
INTRODUCTION
87
5.2
MATERIALS
AND
METHODS
88
5.2.1
MATERIALS
AND
SPECIMEN
PREPARATION
88
5.2.2
COMPACT
TENSION
SHEAR
(CTS)
TEST
90
5.2.3
SINGLE-EDGE
NOTCHED
BEND
(SENB)
90
5.3
RESULTS
AND
DISCUSSION
92
5.3.1
COMPACT
TENSION
SHEAR
(CTS)
TEST
92
5.3.2
MODE
I,
MODE
II,
AND
MIXED
MODE
FRACTURE
TOUGHNESS
FOR
DIFFERENT
LOADING
ANGLE
93
5.3.3
SINGLE-EDGE
NOTCHED
BEND
(SENB)
93
5.3.4
FRACTURE
TOUGHNESS
OF
SENB
TEST
95
5.4
CONCLUSION
96
REFERENCES
96
6
FAILURE
MECHANISMS
OF
FIBER
COMPOSITES
99
CATALIN
LULIAN
PRUNCU
AND
MARIA-LUMINITA
SCUTARU
6.1
INTRODUCTION
99
6.2
INDUSTRIAL
BENEFITS
AND
APPLICATIONS
100
6.3
MATERIALS
FOR
REINFORCING
104
X
CONTENTS
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.6
6.6.1
6.6.1.1
COMPOSITES
REINFORCED
WITH
CONTINUOUS
FIBERS
104
COMPOSITES
REINFORCED
WITH
DISCONTINUOUS
FIBERS
105
COMPOSITES
REINFORCED
WITH
FILLERS
106
RESIN
TYPE
106
EPOXY
RESINS
106
FORMALDEHYDE
RESINS
107
POLYURETHANE
RESINS
107
POLYESTER
RESINS
108
SILICONE
RESINS
108
INTERFACIAL
OF
COMPOSITE
STRUCTURE
109
MICROMECHANICS
110
MECHANICAL
PROPERTIES
110
COEFFICIENTS
OF
THERMAL
EXPANSION
AND
HEAT
TRANSFER
PROPERTIES
111
6.7
6.8
6.9
SHORT
OVERVIEW
OF
SPECIFIC
FAILURE
MODES
112
FUTURE
PERSPECTIVE
113
CONCLUSIONS
114
REFERENCES
114
7
BALLISTIC
BEHAVIOR
OF
FIBER
COMPOSITES
117
IGNACIO
RUBIO
,
JOSUE
ARANDA
RUIZ,
MARCOS
RODRIGUEZ
MILLAN,
JOSE
ANTONIO
LOYA,
AND
MARTA
MARIA
MOURE
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.3
7.4
INTRODUCTION
117
HIGH-VELOCITY
IMPACT
TEST
119
MATERIAL
119
EXPERIMENTAL
SETUP
119
ANALYSIS
AND
RESULTS
121
BALLISTIC
CURVES
121
FAILURE
MODES
123
BACK-FACE
DISPLACEMENT
123
COMPUTATIONAL
METHODS
124
CONCLUSIONS
126
REFERENCES
127
8
MECHANICAL
BEHAVIOR
OF
SYNTHETIC/NATURAL
FIBERS
IN
HYBRID
COMPOSITES
129
NAVASINGH
RAJESH
JESUDOSS
HYNES,
RAMAKRISHNAN
SANKARANARAYANAN,
JEGADEESAPERUMAL
SENTHIL
KUMAR,
SANJAY
MAVINKERE
RANGAPPA,
AND
SUCHART
SIENGCHIN
8.1
8.2
INTRODUCTION
129
IMPACT
STRENGTH
OF
NATURAL
FIBER
(FLAX),
SYNTHETIC
FIBER
(CARBON),
AND
HYBRID
(CARBON/FLAX)
COMPOSITES
130
8.3
KENAF/ARAMID
(EPOXY)
HYBRID
COMPOSITES
WITH
DIFFERENT
FIBER
ORIENTATION
132
8.4
IMPACT
STRENGTH
OF
CARBON/FLAX
(EPOXY)
HYBRID
COMPOSITES
WITH
DIFFERENT
FIBER
ORIENTATION
134
CONTENTS
XI
8.5
COMPARISON
OF
ABSORBED
IMPACT
ENERGY
OF
DIFFERENT
HYBRID
COMPOSITES
135
8.6
COMPARISON
OF
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
137
8.6.1
TENSILE
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
138
8.6.2
FLEXURAL
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
139
8.6.3
IMPACT
STRENGTH
OF
NATURAL
FIBER
(RAMIE),
SYNTHETIC
FIBER
(GLASS),
AND
HYBRID
(RAMIE/GLASS)
COMPOSITES
140
8.7
SUMMARY
AND
OUTLOOK
141
REFERENCES
143
9
BAST
FIBER-BASED
POLYMER
COMPOSITES
147
SANDEEP
KUMAR,
BRIJESH
GANGIL,
KRISHAN
KANT
SINGH
MER,
MANOJ
KUMAR
GUPTA,
AND
VINAY
KUMAR
PATEL
9.1
INTRODUCTION
147
9.1.1
BAST
FIBER
AS
REINFORCING
MATERIAL
149
9.2
POLYMER
COMPOSITES
REINFORCED
WITH
BAST
FIBERS
149
9.2.1
POLYMER
COMPOSITES
REINFORCED
WITH
FLAX
FIBERS
150
9.2.2
POLYMER
COMPOSITES
REINFORCED
WITH
GREWIA
OPTIVA
FIBER
152
9.2.3
POLYMER
COMPOSITES
REINFORCED
WITH
HEMP
FIBER
155
9.2.4
POLYMER
COMPOSITES
REINFORCED
WITH
NETTLE
FIBER
156
9.2.5
POLYMER
COMPOSITES
REINFORCED
WITH
JUTE
FIBER
158
9.3
APPLICATIONS
OF
POLYMER
COMPOSITES
REINFORCED
WITH
BAST
FIBERS
160
9.4
CONCLUSION
161
REFERENCES
161
10
FLAME-RETARDANT
BALSA
WOOD/GFRP
SANDWICH
COMPOSITES,
MECHANICAL
EVALUATION,
AND
COMPARISONS
WITH
OTHER
SANDWICH
COMPOSITES
169
SUBIN
SHAJI
GEORGE,
VIVEK
ARJUNA,
VENKATA
PRUDHVI
PALLAPOLU
;
AND
PADMANABHAN
KRISHNAN
10.1
INTRODUCTION
169
10.2
LITERATURE
SURVEY
171
10.2.1
SANDWICH
COMPOSITE
STRUCTURE
AND
PROPERTIES
171
10.2.2
KNOWLEDGE
GAINED
FROM
THE
LITERATURE
REVIEW
172
10.2.3
GAPS
IDENTIFIED
FROM
LITERATURE
SURVEY
172
10.2.4
OBJECTIVE
OF
THE
PROJECT
173
10.2.5
MOTIVATION
173
10.3
METHODOLOGY
AND
EXPERIMENTAL
WORK
173
10.3.1
HAND
LAY-UP
PROCEDURE
173
10.3.2
VACUUM
BAGGING
174
10.3.3
TESTING
AND
EVALUATIONS
175
10.3.4
TECHNICAL
SPECIFICATION
177
XII
CONTENTS
10.3.5
DESIGN
APPROACH
DETAILS
177
10.3.6
CODES
AND
STANDARDS
178
10.3.7
FABRICATION
METHODOLOGY
178
10.4
RESULTS
AND
DISCUSSION
179
10.4.1
COMPRESSION
TESTING
179
10.4.1.1
FLATWISE
TRANSVERSE
GRAIN
TEST
179
10.4.1.2
EDGEWISE
TRANSVERSE
GRAIN
COMPRESSION
180
10.4.1.3
EDGEWISE
LONGITUDINAL
GRAIN
COMPRESSION
182
10.4.1.4
DISCUSSION
AND
COMMENT
(COMPRESSION
TEST)
183
10.4.2
THREE-POINT
BENDING
TEST
(FLEXURAL
TEST)
183
10.4.2.1
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
BALSA
WOOD
184
10.4.2.2
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
1:1
184
10.4.2.3
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
2:1
184
10.4.2.4
EXPERIMENTAL
RESULT
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
3
:1
187
10.4.2.5
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
4
:1
187
10.4.2.6
EXPERIMENTAL
RESULTS
FOR
THREE-POINT
BENDING
TEST
OF
COMPOSITE
OF
SKIN-TO-CORE
RATIO
5:1
188
10.4.2.7
MEAN,
MINIMUM,
AND
MAXIMUM
MECHANICAL
PROPERTIES
OF
SANDWICH
COMPOSITES
188
10.4.2.8
MECHANICAL
PROPERTIES
OF
SANDWICH
COMPOSITE
FOR
DIFFERENT
CORE
MATERIALS
189
10.4.2.9
DISCUSSION
AND
COMMENTS
(FLEXURAL
TESTING/THREE-POINT
BENDING
TEST)
189
10.4.3
TYPES
AND
MODES
OF
FAILURE
DURING
THE
TEST
ON
SANDWICH
COMPOSITES
190
10.5
CONCLUSIONS
192
10.6
SCOPE
FOR
FUTURE
WORK
193
ACKNOWLEDGMENT
193
LIST
OF
SYMBOLS
AND
ABBREVIATIONS
193
REFERENCES
193
11
BIOCOMPOSITES
REINFORCED
WITH
ANIMAL
AND
REGENERATED
FIBERS
197
MANICKAM
RAMESH,
CHINNAIYAN
DEEPA,
SANJAY
MAVINKERE
RANGAPPA,
AND
SUCHART
SIENGCHIN
11.1
INTRODUCTION
197
11.2
ANIMAL
FIBERS
198
11.2.1
SILK
199
11.2.2
WOOL
200
11.2.3
CHICKEN
FEATHER
201
11.3
REGENERATED
FIBERS
202
11.3.1
LYOCELL
205
CONTENTS
XIII
11.3.2
VISCOSE
206
11.3.3
REGENERATED
KERATIN
FIBERS
207
11.4
INDUSTRIAL
APPLICATIONS
207
11.5
SUMMARY
AND
DISCUSSION
207
11.6
CONCLUSIONS
AND
SCOPE
FOR
FUTURE
RESEARCH
208
REFERENCES
208
12
EFFECT
OF
GLASS
AND
BANANA
FIBER
MAT
ORIENTATION
AND
NUMBER
LAYERS
ON
MECHANICAL
PROPERTIES
OF
HYBRID
COMPOSITES
217
T.P.
SATHISHKUMAR,
S.
RAMAKRISHNAN,
AND
P.
NAVANEETHAKRISHNAN
12.1
INTRODUCTION
217
12.2
MATERIALS
220
12.3
PREPARATION
OF
COMPOSITES
221
12.4
CHARACTERIZATION
222
12.5
RESULTS
AND
DISCUSSION
224
12.5.1
EFFECT
OF
NUMBER
AND
ORIENTATION
OF
LAYERS
ON
TENSILE
PROPERTIES
224
12.5.2
EFFECT
OF
NUMBER
AND
ORIENTATION
OF
LAYERS
ON
FLEXURAL
PROPERTIES
225
12.5.3
EFFECT
OF
NUMBER
AND
ORIENTATION
OF
LAYERS
ON
IMPACT
PROPERTIES
228
12.6
CONCLUSION
229
REFERENCES
230
13
CHARACTERIZATION
OF
MECHANICAL
AND
TRIBOLOGICAL
PROPERTIES
OF
VINYL
ESTER-BASED
HYBRID
GREEN
COMPOSITES
233
B.
SURESHA,
R.
HEMANTH,
AND
P.A.
UDAYA
KUMAR
13.1
INTRODUCTION
233
13.2
MATERIALS
AND
METHODS
237
13.2.1
MATRIX
237
13.2.2
REINFORCEMENTS
238
13.2.2.1
COIR
FIBER
AND
COCONUT
SHELL
POWDER
238
13.2.2.2
ARAMID
FIBER
239
13.2.3
CHEMICAL
TREATMENT
239
13.2.4
FABRICATION
OF
VINYL
ESTER-BASED
HYBRID
COMPOSITES
239
13.3
CHARACTERIZATION
240
13.3.1
PHYSICOMECHANICAL
CHARACTERIZATIONS
240
13.3.1.1
HARDNESS
240
13.3.1.2
TENSILE
TESTING
241
13.3.1.3
FLEXURAL
TESTING
241
13.3.1.4
IMPACT
TESTING
242
13.3.2
WEAR
TESTING
242
13.3.3
FRACTOGRAPHY
ANALYSIS
USING
SCANNING
ELECTRON
MICROSCOPE
243
13.4
SURFACE
TREATMENT
OF
REINFORCEMENTS
244
13.5
RESULTS
AND
DISCUSSION
245
XIV
CONTENTS
13.5.1
HARDNESS
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
245
13.5.2
TENSILE
PROPERTIES
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
246
13.5.2.1
FRACTOGRAPHY
ANALYSIS
247
13.5.3
FLEXURAL
PROPERTIES
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
248
13.5.3.1
FRACTOGRAPHY
ANALYSIS
248
13.5.4
IMPACT
STRENGTH
OF
VINYL
ESTER
AND
THEIR
HYBRID
COMPOSITES
249
13.5.4.1
FRACTOGRAPHY
ANALYSIS
250
13.5.5
TRIBOLOGY
OF
VINYL
ESTER
HYBRID
COMPOSITES
251
13.5.5.1
EFFECT
OF
FIBER
AND
FILLER
ON
COEFFICIENT
OF
FRICTION
252
13.5.5.2
EFFECTS
OF
SLIDING
DISTANCE
AND
APPLIED
LOAD
ON
SPECIFIC
WEAR
RATE
254
13.5.5.3
WORN
SURFACE
MORPHOLOGY
256
13.6
CONCLUSIONS
260
REFERENCES
260
14
THERMOMECHANICAL
CHARACTERIZATION
OF
VACUUM
RESIN
INFUSION-MOLDED
CERAMIC
ROCK-DERIVED
NATURAL
WOOL-REINFORCED
EPOXY
AND
CASHEW
NUT
SHELL
LIQUID-BASED
COMPOSITES
265
NIKUNJ
VIRAMGAMA,
ANMOL
GARG
,
KEVIN
THOMAS
,
AND
PADMANABHAN
KRISHNAN
14.1
INTRODUCTION
265
14.1.1
NATURAL
FIBERS
AS
A
SUBSTITUTE
FOR
SYNTHETIC
FIBERS
265
14.1.2
BIOCOMPOSITES
265
14.1.3
ROCKWOOL
FIBERS
266
14.1.4
COMPOSITES
WITH
ROCKWOOL
FIBER
AS
REINFORCEMENT
266
14.1.5
RESIN
OR
MATRIX
MATERIALS
267
14.1.6
GAPS
IN
THE
LITERATURE
REVIEW
267
14.2
METHODOLOGY
AND
APPROACH
267
14.2.1
FABRICATION
AND
EXPERIMENTATION
268
14.3
RESULTS
AND
DISCUSSION
270
14.3.1
ENERGY-DISPERSIVE
X-RAY
SPECTROSCOPY
(EDS
OF
ROCKWOOL)
270
14.3.2
THERMOGRAVIMETRIC
ANALYSIS
(TGA
OF
ROCKWOOL)
272
14.3.3
DIFFERENTIAL
SCANNING
CALORIMETRY
OF
ROCKWOOL
272
14.3.4
VOLUME
FRACTION
OF
FABRICATED
COMPOSITE
273
14.3.4.1
VOLUME
FRACTION
OF
ROCKWOOL
FOR EPOXY-BASED
COMPOSITE
273
14.3.4.2
VOLUME
FRACTION
OF
ROCKWOOL
FIBER
FOR
CNSL
COMPOSITE
274
14.3.5
EPOXY-BASED
COMPOSITE
TESTS
AND
ANALYSES
274
14.3.5.1
TENSILE
TEST
274
14.3.5.2
COMPRESSION
TEST
280
14.3.5.3
FLEXURE
TEST
284
14.3.6
SCANNING
ELECTRON
MICROSCOPY
(SEM)
ANALYSIS
OF
EPOXY-BASED
COMPOSITES
289
14.3.7
ROCKWOOL/CNSL
COMPOSITE
TEST
RESULTS
294
14.3.7.1
TENSILE
TEST
RESULTS
294
14.3.7.2
COMPRESSION
TEST
RESULTS
297
14.3.7.3
FLEXURE
TEST
RESULTS
299
CONTENTS
XV
14.3.8
SCANNING
ELECTRON
MICROSCOPY
(SEM)
ANALYSIS
OF
THE
CNSL-BASED
COMPOSITE
301
14.3.9
FURTHER
SCOPE
OF
RESEARCH
304
ACKNOWLEDGMENTS
305
REFERENCES
305
15
HYDROGEL
SCAFFOLD-BASED
FIBER
COMPOSITES
FOR
ENGINEERING
APPLICATIONS
307
IKRAM
AHMAD
'
JOSE
HERIBERTO
OLIVEIRA
DO
NASCIMENTO,
SOBIA
TABASSUM,
AMNA
MUMTAZ,
SADIA
KHALID,
AND
AWAIS
AHMAD
15.1
INTRODUCTION
307
15.1.1
HYDROGELS
307
15.1.2
HYDROGELS
AS
COMPARED
TO
GELS
308
15.1.3
CLASSIFICATION
OF
HYDROGELS
308
15.1.3.1
HYDROGEL
ORIGIN
308
15.1.3.2
HYDROGEL
DURABILITY
308
15.1.3.3
HYDROGEL
RESPONSE
TO
ENVIRONMENTAL
STIMULI
309
15.1.4
METHODS OF
PREPARATION
OF
HYDROGELS
309
15.1.4.1
FREE
RADICAL
POLYMERIZATION
309
15.1.4.2
IRRADIATION
CROSS-LINKING
OF
HYDROGEL
POLYMERIC
PRECURSORS
310
15.1.4.3
CHEMICAL
CROSS-LINKING
OF
HYDROGEL
POLYMERIC
PRECURSORS
310
15.1.4.4
PHYSICAL
CROSS-LINKING
OF
HYDROGEL
POLYMERIC
PRECURSORS
310
15.1.5
SCAFFOLD
311
15.1.5.1
BIOCOMPATIBILITY
312
15.1.5.2
BIODEGRADABILITY
312
15.1.5.3
MECHANICAL
PROPERTIES
312
15.1.5.4
STRUCTURE
312
15.1.5.5
NATURE
313
15.2
POTENTIAL
APPLICATIONS
OF
HYDROGELS
AS
SCAFFOLD
IN
BIOMEDICAL
APPLICATION
313
15.2.1
HYDROGEL
AND
TISSUE
ENGINEERING
314
15.2.2
HYDROGELS
AS
CARRIERS
FOR
CELL
TRANSPLANTATION
314
15.2.3
HYDROGELS
AS
A
BARRIER
AGAINST
REST
ENOSIS
314
15.2.4
HYDROGELS
AS
DRUG
DEPOTS
315
15.3
DESIGN
CRITERIA
FOR
HYDROGEL
SCAFFOLDS
IN
TISSUE
ENGINEERING
315
15.3.1
BIODEGRADATION
316
15.3.2
BIOCOMPATIBILITY
316
15.3.3
PORE
SIZE
AND
POROSITY
EXTENT
317
15.3.4
MECHANICAL
CHARACTERISTICS
317
15.3.5
SURFACE
CHARACTERISTICS
317
15.3.6
VASCULARIZATION
318
15.4
HYDROGEL
SCAFFOLD:
A
MAIN
TOOL
FOR
TISSUE
ENGINEERING
318
15.4.1
FABRICATION
OF
HYDROGEL
SCAFFOLDS
FOR
TISSUE
ENGINEERING
318
15.4.1.1
EMULSIFICATION
318
15.4.2
LYOPHILIZATION 319
15.4.2.1
EMULSIFICATION LYOPHILIZATION
320
15.4.2.2
SOLVENT
CASTING
LEACHING
320
XVI
CONTENTS
15.4.2.3
15.4.2.4
15.4.2.5
15.4.2.6
15.4.2.7
15.4.2.8
15.5
15.6
15.6.1
15.6.2
15.6.3
15.7
15.7.1
15.7.2
15.7.3
15.7.4
15.7.5
15.8
15.8.1
15.8.1.1
15.8.1.2
15.8.1.3
15.8.1.4
15.8.1.5
15.8.1.6
15.8.1.7
15.8.1.8
15.8.1.9
15.9
GAS
FOAMING
LEACHING
320
PHOTOLITHOGRAPHY
321
ELECTROSPINNING
321
MICROFLUIDICS
322
MICROMOLDING
322
THREE-DIMENSIONAL
ORGAN/TISSUE
PRINTING
323
HYDROGEL
SCAFFOLDS
FOR
CARDIAC
TISSUE
ENGINEERING
324
HYDROGEL
SCAFFOLD
FABRICATION
FOR
SKIN
REGENERATION
326
MOLDING
SCAFFOLDS
326
NANOFIBER
FABRICATION
SCAFFOLDS
326
THREE-DIMENSIONAL
(3D)
PRINTING
327
OSTEOCHONDRAL
TISSUE
REGENERATION
327
SINGLE-LAYER
GELATINOUS
SCAFFOLDS
327
MULTILAYER
GELATINOUS
SCAFFOLDS
328
GEL/FIBER
SCAFFOLDS
329
FABRICATION
OF
GRADIENT
HYDROGELS
330
FABRICATION
OF
GRADIENT
HYDROGEL/FIBER
COMPOSITES
331
BIOPOLYMER-BASED
HYDROGEL
SYSTEMS
332
POLYSACCHARIDE
HYDROGELS
AS
SCAFFOLDS
332
CHONDROITIN
SULFATE
332
HYALURONIC
ACID
333
CHITOSAN
334
CELLULOSE
DERIVATIVES
335
ALGINATE
336
COLLAGEN
337
GELATIN
337
ELASTIN
339
FIBROIN
339
SUMMARY
340
REFERENCES
340
16
EXPERIMENTAL
ANALYSIS
OF
STYRENE,
PARTICLE
SIZE,
AND
FIBER
CONTENT
IN
THE
MECHANICAL
PROPERTIES
OF
SISAL
FIBER
POWDER
COMPOSITES
351
KATIA
MELO
THIAGO
SANTOS
,
CAROLINY
SANTOS,
RUBENS
FONSECA
,
NESTOR
DANTAS,
AND
MARCOS
AQUINO
16.1
16.2
16.3
16.4
INTRODUCTION
351
MATERIALS
AND
METHODS
352
RESULTS
AND
DISCUSSION
353
CONCLUSIONS
364
ACKNOWLEDGMENTS
364
REFERENCES
365
CONTENTS
XVII
INDEX
405
17
INFLUENCE
OF
FIBER
CONTENT
IN
THE
WATER
ABSORPTION
AND
MECHANICAL
PROPERTIES
OF
SISAL
FIBER
POWDER
COMPOSITES
369
KDTIA
MELO,
THIAGO
SANTOS
;
CAROLINY
SANTOS,
RUBENS
FONSECA,
NESTOR
DONTAS,
AND
MARCOS
AQUINO
17.1
17.2
17.2.1
17.2.2
17.3
17.4
INTRODUCTION
369
MATERIALS
AND
METHODS
370
MECHANICAL
TEST
370
WATER
ABSORPTION
370
RESULTS
AND
DISCUSSION
371
CONCLUSIONS
376
ACKNOWLEDGMENTS
377
REFERENCES
377
18
RECENT
ADVANCES
OF
HYBRID
FIBER
COMPOSITES
FOR
VARIOUS
APPLICATIONS
381
PRAVEEN
KUMAR
ALAGESAN
18.1
18.2
18.3
18.4
18.5
INTRODUCTION
381
WHAT
IS
A
HYBRID
COMPOSITE?
384
HYBRID
BIOCOMPOSITES
386
HYBRID
NANOBIOCOMPOSITES
388
POTENTIAL APPLICATIONS
OF
HYBRID
COMPOSITES
IN
VARIOUS
APPLICATIONS
389
18.5.1
18.5.2
18.5.3
18.5.4
18.6
18.7
AEROSPACE
APPLICATIONS
389
AUTOMOTIVE
APPLICATIONS
391
BALLISTIC
APPLICATIONS
394
IMPACT
LOADING
APPLICATIONS
395
CHALLENGES,
PROSPECTS,
AND
FUTURE
TRENDS
397
CONCLUSIONS
398
ACKNOWLEDGMENTS
398
REFERENCES
398 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Khan, Anish Rangappa, Sanjay Mavinkere Jawaid, Mohammad Suchart Siengchin Asiri, Abdullah Mohamed 1966- |
author2_role | edt edt edt edt edt |
author2_variant | a k ak s m r sm smr m j mj s s ss a m a am ama |
author_GND | (DE-588)1155752694 (DE-588)1219460885 (DE-588)1170179029 (DE-588)136810772 (DE-588)1138993166 |
author_facet | Khan, Anish Rangappa, Sanjay Mavinkere Jawaid, Mohammad Suchart Siengchin Asiri, Abdullah Mohamed 1966- |
building | Verbundindex |
bvnumber | BV047044509 |
classification_rvk | UQ 8420 ZM 7020 |
ctrlnum | (OCoLC)1225887490 (DE-599)DNB1203960840 |
discipline | Physik Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Physik Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV047044509</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210310</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">201204s2020 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N06</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1203960840</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527346721</subfield><subfield code="c">Festeinband : EUR 149.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-34672-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527346721</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1134672 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1225887490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1203960840</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8420</subfield><subfield code="0">(DE-625)146597:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7020</subfield><subfield code="0">(DE-625)157098:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.82</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid fiber composites</subfield><subfield code="b">materials, manufacturing, process engineering</subfield><subfield code="c">edited by Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin, Abdullah M. Asiri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 414 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faserverstärkung</subfield><subfield code="0">(DE-588)4282525-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faserverbundwerkstoff</subfield><subfield code="0">(DE-588)4134341-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faserverbundbauteil</subfield><subfield code="0">(DE-588)4232654-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybridwerkstoff</subfield><subfield code="0">(DE-588)4160847-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faserverstärkter Kunststoff</subfield><subfield code="0">(DE-588)4128805-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Faserverstärkung</subfield><subfield code="0">(DE-588)4282525-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Faserverbundbauteil</subfield><subfield code="0">(DE-588)4232654-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Faserverstärkter Kunststoff</subfield><subfield code="0">(DE-588)4128805-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Hybridwerkstoff</subfield><subfield code="0">(DE-588)4160847-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Faserverbundwerkstoff</subfield><subfield code="0">(DE-588)4134341-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hybridwerkstoff</subfield><subfield code="0">(DE-588)4160847-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Anish</subfield><subfield code="0">(DE-588)1155752694</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rangappa, Sanjay Mavinkere</subfield><subfield code="0">(DE-588)1219460885</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jawaid, Mohammad</subfield><subfield code="0">(DE-588)1170179029</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suchart Siengchin</subfield><subfield code="0">(DE-588)136810772</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asiri, Abdullah Mohamed</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)1138993166</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-82456-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-82458-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34672-1</subfield><subfield code="v">2020-02-05</subfield><subfield code="x">Verlag</subfield><subfield code="3">Unbekannt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032451525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032451525</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047044509 |
illustrated | Illustrated |
index_date | 2024-07-03T16:06:45Z |
indexdate | 2024-09-26T12:01:28Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527346721 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032451525 |
oclc_num | 1225887490 |
open_access_boolean | |
owner | DE-1050 DE-703 DE-384 |
owner_facet | DE-1050 DE-703 DE-384 |
physical | xxi, 414 Seiten Illustrationen, Diagramme 25 cm x 17 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Hybrid fiber composites materials, manufacturing, process engineering edited by Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin, Abdullah M. Asiri Weinheim Wiley-VCH [2020] xxi, 414 Seiten Illustrationen, Diagramme 25 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Literaturangaben Faserverstärkung (DE-588)4282525-8 gnd rswk-swf Faserverbundwerkstoff (DE-588)4134341-4 gnd rswk-swf Faserverbundbauteil (DE-588)4232654-0 gnd rswk-swf Verbundwerkstoff (DE-588)4062670-2 gnd rswk-swf Hybridwerkstoff (DE-588)4160847-1 gnd rswk-swf Faserverstärkter Kunststoff (DE-588)4128805-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Faserverstärkung (DE-588)4282525-8 s Faserverbundbauteil (DE-588)4232654-0 s Faserverstärkter Kunststoff (DE-588)4128805-1 s Hybridwerkstoff (DE-588)4160847-1 s Verbundwerkstoff (DE-588)4062670-2 s DE-604 Faserverbundwerkstoff (DE-588)4134341-4 s Khan, Anish (DE-588)1155752694 edt Rangappa, Sanjay Mavinkere (DE-588)1219460885 edt Jawaid, Mohammad (DE-588)1170179029 edt Suchart Siengchin (DE-588)136810772 edt Asiri, Abdullah Mohamed 1966- (DE-588)1138993166 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-82456-4 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-82458-8 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34672-1 2020-02-05 Verlag Unbekannt DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032451525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hybrid fiber composites materials, manufacturing, process engineering Faserverstärkung (DE-588)4282525-8 gnd Faserverbundwerkstoff (DE-588)4134341-4 gnd Faserverbundbauteil (DE-588)4232654-0 gnd Verbundwerkstoff (DE-588)4062670-2 gnd Hybridwerkstoff (DE-588)4160847-1 gnd Faserverstärkter Kunststoff (DE-588)4128805-1 gnd |
subject_GND | (DE-588)4282525-8 (DE-588)4134341-4 (DE-588)4232654-0 (DE-588)4062670-2 (DE-588)4160847-1 (DE-588)4128805-1 (DE-588)4143413-4 |
title | Hybrid fiber composites materials, manufacturing, process engineering |
title_auth | Hybrid fiber composites materials, manufacturing, process engineering |
title_exact_search | Hybrid fiber composites materials, manufacturing, process engineering |
title_exact_search_txtP | Hybrid fiber composites materials, manufacturing, process engineering |
title_full | Hybrid fiber composites materials, manufacturing, process engineering edited by Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin, Abdullah M. Asiri |
title_fullStr | Hybrid fiber composites materials, manufacturing, process engineering edited by Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin, Abdullah M. Asiri |
title_full_unstemmed | Hybrid fiber composites materials, manufacturing, process engineering edited by Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin, Abdullah M. Asiri |
title_short | Hybrid fiber composites |
title_sort | hybrid fiber composites materials manufacturing process engineering |
title_sub | materials, manufacturing, process engineering |
topic | Faserverstärkung (DE-588)4282525-8 gnd Faserverbundwerkstoff (DE-588)4134341-4 gnd Faserverbundbauteil (DE-588)4232654-0 gnd Verbundwerkstoff (DE-588)4062670-2 gnd Hybridwerkstoff (DE-588)4160847-1 gnd Faserverstärkter Kunststoff (DE-588)4128805-1 gnd |
topic_facet | Faserverstärkung Faserverbundwerkstoff Faserverbundbauteil Verbundwerkstoff Hybridwerkstoff Faserverstärkter Kunststoff Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34672-1 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032451525&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT khananish hybridfibercompositesmaterialsmanufacturingprocessengineering AT rangappasanjaymavinkere hybridfibercompositesmaterialsmanufacturingprocessengineering AT jawaidmohammad hybridfibercompositesmaterialsmanufacturingprocessengineering AT suchartsiengchin hybridfibercompositesmaterialsmanufacturingprocessengineering AT asiriabdullahmohamed hybridfibercompositesmaterialsmanufacturingprocessengineering AT wileyvch hybridfibercompositesmaterialsmanufacturingprocessengineering |