Deep Learning mit Microsoft Azure:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Bonn
Rheinwerk
2019
|
Ausgabe: | 1. Auflage |
Schlagworte: | |
Online-Zugang: | FWS01 FWS02 TUM01 |
Beschreibung: | Auf dem Cover: "Einstieg, Konzepte, Codebeispiele und Wekrzeuge, Überblick über neuronale Netze, Machine Learning, Deep Learning, Cloud-Umgebungen für Data Science und KI-Entwicklung" |
Beschreibung: | 1 Online-Ressource (262 Seiten) Illustrationen, Diagramme |
ISBN: | 9783836269957 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV047043956 | ||
003 | DE-604 | ||
005 | 20210204 | ||
007 | cr|uuu---uuuuu | ||
008 | 201204s2019 gw |||| o||u| ||||||ger d | ||
020 | |a 9783836269957 |9 978-3-8362-6995-7 | ||
035 | |a (OCoLC)1225884195 | ||
035 | |a (DE-599)BVBBV047043956 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a ger | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-863 |a DE-862 |a DE-91G | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 200 |0 (DE-625)143611: |2 rvk | ||
084 | |a ST 510 |0 (DE-625)143676: |2 rvk | ||
084 | |a DAT 303 |2 stub | ||
084 | |a DAT 708 |2 stub | ||
100 | 1 | |a Salvaris, Mathew |e Verfasser |0 (DE-588)1188722980 |4 aut | |
245 | 1 | 0 | |a Deep Learning mit Microsoft Azure |c Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
250 | |a 1. Auflage | ||
264 | 1 | |a Bonn |b Rheinwerk |c 2019 | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (262 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Auf dem Cover: "Einstieg, Konzepte, Codebeispiele und Wekrzeuge, Überblick über neuronale Netze, Machine Learning, Deep Learning, Cloud-Umgebungen für Data Science und KI-Entwicklung" | ||
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Windows Azure |0 (DE-588)7693533-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Softwareplattform |0 (DE-588)4702244-9 |2 gnd |9 rswk-swf |
653 | |a Tensor Flow | ||
653 | |a Keras | ||
653 | |a Künstliche Intelligenz | ||
653 | |a Datenanalyse | ||
653 | |a Predictive Analytics | ||
653 | |a Cognitive Services | ||
653 | |a Custom Vision | ||
653 | |a Docker | ||
653 | |a Visual Studio | ||
653 | |a VS Code | ||
653 | |a Azure-AI | ||
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Windows Azure |0 (DE-588)7693533-4 |D s |
689 | 0 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 3 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 1 | 1 | |a Windows Azure |0 (DE-588)7693533-4 |D s |
689 | 1 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 3 | |a Softwareplattform |0 (DE-588)4702244-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Dean, Danielle |e Verfasser |0 (DE-588)1188723642 |4 aut | |
700 | 1 | |a Tok, Wee Hyong |e Verfasser |0 (DE-588)1188724363 |4 aut | |
700 | 1 | 2 | |a Salvaris, Mathew |t Deep learning with Azure |
710 | 2 | |a Rheinwerk Verlag |0 (DE-588)1081738405 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-8362-6993-3 |z 3-8362-6993-7 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032450972 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6382933 |l FWS01 |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6382933 |l FWS02 |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6382933 |l TUM01 |p ZDB-30-PQE |q TUM_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 861758 |
---|---|
_version_ | 1806193783845421056 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Salvaris, Mathew Dean, Danielle Tok, Wee Hyong |
author2 | Salvaris, Mathew |
author2_role | |
author2_variant | m s ms |
author_GND | (DE-588)1188722980 (DE-588)1188723642 (DE-588)1188724363 |
author_facet | Salvaris, Mathew Dean, Danielle Tok, Wee Hyong Salvaris, Mathew |
author_role | aut aut aut |
author_sort | Salvaris, Mathew |
author_variant | m s ms d d dd w h t wh wht |
building | Verbundindex |
bvnumber | BV047043956 |
classification_rvk | ST 300 ST 302 ST 200 ST 510 |
classification_tum | DAT 303 DAT 708 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1225884195 (DE-599)BVBBV047043956 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | 1. Auflage |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03286nmm a2200793 c 4500</leader><controlfield tag="001">BV047043956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210204 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201204s2019 gw |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783836269957</subfield><subfield code="9">978-3-8362-6995-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1225884195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047043956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 200</subfield><subfield code="0">(DE-625)143611:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 510</subfield><subfield code="0">(DE-625)143676:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 303</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Salvaris, Mathew</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1188722980</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning mit Microsoft Azure</subfield><subfield code="c">Mathew Salvaris, Danielle Dean, Wee Hyong Tok</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bonn</subfield><subfield code="b">Rheinwerk</subfield><subfield code="c">2019</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (262 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf dem Cover: "Einstieg, Konzepte, Codebeispiele und Wekrzeuge, Überblick über neuronale Netze, Machine Learning, Deep Learning, Cloud-Umgebungen für Data Science und KI-Entwicklung"</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windows Azure</subfield><subfield code="0">(DE-588)7693533-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Softwareplattform</subfield><subfield code="0">(DE-588)4702244-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tensor Flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Keras</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Datenanalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Predictive Analytics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cognitive Services</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Custom Vision</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Docker</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Visual Studio</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">VS Code</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Azure-AI</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Windows Azure</subfield><subfield code="0">(DE-588)7693533-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Windows Azure</subfield><subfield code="0">(DE-588)7693533-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Softwareplattform</subfield><subfield code="0">(DE-588)4702244-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dean, Danielle</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1188723642</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tok, Wee Hyong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1188724363</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2="2"><subfield code="a">Salvaris, Mathew</subfield><subfield code="t">Deep learning with Azure</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Rheinwerk Verlag</subfield><subfield code="0">(DE-588)1081738405</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-8362-6993-3</subfield><subfield code="z">3-8362-6993-7</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032450972</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6382933</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6382933</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6382933</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047043956 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:06:41Z |
indexdate | 2024-08-01T15:57:01Z |
institution | BVB |
institution_GND | (DE-588)1081738405 |
isbn | 9783836269957 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032450972 |
oclc_num | 1225884195 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-91G DE-BY-TUM |
owner_facet | DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (262 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_Einzelkauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Rheinwerk |
record_format | marc |
spellingShingle | Salvaris, Mathew Dean, Danielle Tok, Wee Hyong Deep Learning mit Microsoft Azure Deep learning (DE-588)1135597375 gnd Windows Azure (DE-588)7693533-4 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Softwareplattform (DE-588)4702244-9 gnd |
subject_GND | (DE-588)1135597375 (DE-588)7693533-4 (DE-588)4033447-8 (DE-588)1160521077 (DE-588)4702244-9 |
title | Deep Learning mit Microsoft Azure |
title_alt | Deep learning with Azure |
title_auth | Deep Learning mit Microsoft Azure |
title_exact_search | Deep Learning mit Microsoft Azure |
title_exact_search_txtP | Deep Learning mit Microsoft Azure |
title_full | Deep Learning mit Microsoft Azure Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
title_fullStr | Deep Learning mit Microsoft Azure Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
title_full_unstemmed | Deep Learning mit Microsoft Azure Mathew Salvaris, Danielle Dean, Wee Hyong Tok |
title_short | Deep Learning mit Microsoft Azure |
title_sort | deep learning mit microsoft azure |
topic | Deep learning (DE-588)1135597375 gnd Windows Azure (DE-588)7693533-4 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Keras Framework, Informatik (DE-588)1160521077 gnd Softwareplattform (DE-588)4702244-9 gnd |
topic_facet | Deep learning Windows Azure Künstliche Intelligenz Keras Framework, Informatik Softwareplattform |
work_keys_str_mv | AT salvarismathew deeplearningmitmicrosoftazure AT deandanielle deeplearningmitmicrosoftazure AT tokweehyong deeplearningmitmicrosoftazure AT rheinwerkverlag deeplearningmitmicrosoftazure |