Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Köln
2020
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XIV, 153 Seiten Illustrationen 30 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047036742 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 201201s2020 gw a||| m||| 00||| eng d | ||
015 | |a 20,H11 |2 dnb | ||
016 | 7 | |a 1217346309 |2 DE-101 | |
020 | |c Broschur | ||
035 | |a (OCoLC)1202812572 | ||
035 | |a (DE-599)DNB1217346309 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-355 |a DE-83 | ||
084 | |a 570 |2 sdnb | ||
100 | 1 | |a Bauer, Saskia |e Verfasser |0 (DE-588)1210201216 |4 aut | |
245 | 1 | 0 | |a Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors |c vorgelegt von Saskia Bauer |
264 | 1 | |a Köln |c 2020 | |
300 | |a XIV, 153 Seiten |b Illustrationen |c 30 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität zu Köln |d 2019 | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1217346309/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032443895&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032443895 |
Datensatz im Suchindex
_version_ | 1804182013556555776 |
---|---|
adam_text | TABLE
OF
CONTENTS
TABLE
OF
CONTENTS
......................................................................................
I
LIST
OF
FIGURES.........................................................................................
VII
LIST
OF
TABLES
............................................................................................
IX
LIST
OF
ABBREVIATIONS
................................................................................
X
ABSTRACT
...................................................................................................XII
ZUSAMMENFASSUNG................................................................................
XIII
1
INTRODUCTION
........................................................................................................................
1
1.1
GENERAL
INTRODUCTION
OF
THE
PLANT
IMMUNE
SYSTEM
...................................................
1
1.1.1
PATTERN-TRIGGERED
IMMUNITY
(PTI)
.......................................................................
1
1.1.2
EFFECTOR-TRIGGERED
SUSCEPTIBILITY
(ETS)
................................................................
3
1.1.3
EFFECTOR-TRIGGERED
IMMUNITY
(ETI)
......................................................................
3
1.1.4
NLR
GENE
ENGINEERING
AS
A
TOOL
FOR
PLANT
RESISTANCE
BREEDING
..........................
4
1.2
NLR-MEDIATED
IMMUNITY
.............................................................................................
5
1.2.1
NLR
PROTEIN
ARCHITECTURE
AND
FUNCTION
...............................................................
5
1.2.2
MECHANISMS
OF
NLR-MEDIATED
EFFECTOR
RECOGNITION
.........................................
7
1.2.2.1
INDIRECT
RECOGNITION
OF
EFFECTORS
.....................................................................
8
1.2.2.1.1
NLRS
THAT
MONITOR
GUARDS
........................................................................
8
1.2.2.1.2
NLRS
THAT
MONITOR
DECOYS
........................................................................
8
1.2.2.2
DIRECT
RECOGNITION
OF
EFFECTORS
........................................................................
9
1.2.2.2.1
...BY
NLRS
WITH
AN
INTEGRATED
DECOY
DOMAIN
..........................................
9
1.2.2.2.2
...BY
NLRS
WITHOUT
AN
APPARENT
INTEGRATED
DECOY
DOMAIN
...................
10
1.3
DESCRIPTION
OF
THE
BARLEY
MIA
-
POWDERY
MILDEW
AVR
A
PLANT-PATHOGEN
INTERACTION
ON
THE
MOLECULAR
AND
GENETIC
LEVEL
......................................................................................
13
1.3.1
THE
BARLEY
MILDEW
LOCUS
A
(MIA)
.....................................................................
13
1.3.1.1
MIA
CONFERS
RESISTANCE
TO
DIVERSE
FUNGAL
PATHOGENS
..................................
13
1.3.1.2
CONSERVATION
OF
THE
MLA-MEDIATED
IMMUNE
SIGNALING
MECHANISM
..........
14
1.3.2
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDE!
(BGH)
.............................................
14
1.3.2.1
LIFECYCLE
AND
POPULATION
STRUCTURE
..............................................................
14
1.3.2.2
GENOME
.........................................................................................................
16
1.3.2.3
EFFECTOROME
..................................................................................................
16
1.3.3
SEQUENCE-UNRELATED
BGH
AVR
A
EFFECTORS
ARE
SPECIFICALLY
RECOGNIZED
BY
BARLEY
MLA
RECEPTORS
...................................................................................................................
17
1.4
AIM
OF
THESIS
..............................................................................................................
21
2
RESULTS
..............................................................................................................................
22
2.1
POPULATION
STRUCTURE
ANALYSIS
OF
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
AND
A
TRANSCRIPTOME-WIDE
ASSOCIATION
STUDY
LEAD
TO
THE
IDENTIFICATION
OF
NOVEL
AVR
A
GENE
CANDIDATES
.............................................................................................................................
23
2.1.1
INTRODUCTION
.......................................................................................................
23
2.1.2
A
LOCAL
BGH
POPULATION
FROM
GERMANY
EXHIBITS
A
HIGH
AVR
A
DIVERSITY
AND
HIGH
MIA
VIRULENCE
FREQUENCIES
................................................................................................
25
2.1.3
TRANSCRIPTOME-WIDE
ASSOCIATION
STUDY
AND
BGH
GENOME
ANALYSIS
IDENTIFIES
CANDIDATE
AVR
A
3,
AVR
A
6,
AVR
0
7,
AVR
0
9,
AVR
0
IO
AND
AVR
O
22
EFFECTOR
GENES....................
33
2.2
VALIDATION
OF
A
VR
A
CANDIDATES
BY
TRANSIENT
CO-EXPRESSION
WITH
THEIR
CORRESPONDING
MIA
RECEPTOR
........................................................................................................................
43
2.2.1
INTRODUCTION
......................................................................................................
43
2.2.2
VALIDATION
OF
MLA-AVR
A
RECEPTOR-EFFECTOR
PAIRS
BY
TRANSIENT
CO-EXPRESSION
ASSAYS
IN
BARLEY
PROTOPLASTS
AND
NICOTIANA
BENTHAMIANA
.............................................
44
2.2.3
INTERACTION
OF
MLA
RECEPTORS
WITH
AVR
A
EFFECTORS
IN
YEAST
SUGGESTS
A
DIRECT
RECOGNITION
MECHANISM
....................................................................................................
51
2.3
IDENTIFYING
EFFECTOR
AND
RECEPTOR
AMINO
ACID
POSITIONS
RESPONSIBLE
FOR
THE
SPECIFIC
RECOGNITION
OF
THE
ALLELIC
AVR
AIO
AND
AVR
A
22
BY
MLA10
AND
MLA22
.................................54
II
2.3.1
INTRODUCTION
........................................................................................................
54
2.3.2
THE
LRR
DOMAIN
OF
MLALO
AND
MLA22
ENCODES
THE
RECOGNITION
SPECIFICITY
FOR
AVR
AIO
OR
AVR
A
22,
RESPECTIVELY
........................................................................................54
2.3.3
IDENTIFICATION
OF
AVR
AIO
AND
AVR
A
22
RESIDUES,
WHICH
ARE
SPECIFICALLY
RECOGNIZED
BY
MLA10
OR
MLA22
.........................................................................................................
57
2.3.4
THE
MOST
PROMINENT
AVR
AIO
HAPLOTYPES
IN
THE
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
TRITICI,
B.G.
F.
SP.
TRITICALE
AND
B.G.
F.
SP.
SECALIS
ARE
NOT
RECOGNIZED
BY
MLA10
AND
MLA22
........................................................................................................................
62
3
DISCUSSION
.........................................................................................................................
64
3.1
SUMMARY
....................................................................................................................64
3.2
IDENTIFICATION
AND
VALIDATION
OF
NOVEL
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
AVRA
EFFECTOR
GENES
..............................................................................................................
65
3.2.1
AN
EXTENDED
COLLECTION
OF
ISOLATES
FROM
A
LOCAL
BGH
POPULATION
FACILITATES
THE
IDENTIFICATION
OF
AVR
A
GENES
..............................................................................................
65
3.2.2
IDENTIFICATION
OF
THE
AVR
A
9,
AVRAIO
AND
A
VR
O
22
BARLEY
POWDERY
MILDEW
EFFECTOR
GENE
CLUSTER
SHOWS
THAT
ALLELIC
MLA
RECEPTORS
CAN
RECOGNIZE
SEQUENCE-RELATED
AND
-
UNRELATED
POWDERY
MILDEW
EFFECTORS
..............................................................................
67
3.2.3
IMPORTANCE
OF
FUTURE
AVR
03
AND
AVR
0
6
EFFECTOR
GENE
IDENTIFICATION
..............
68
3.3
STUDYING
THE
RECOGNITION
MECHANISM
OF
AVR
A
EFFECTORS
BY
MLA
RECEPTORS
.........70
3.3.1
MULTIPLE
PAIRS
OF
AVR
A
EFFECTORS
AND
ALLELIC
MLA
RECEPTORS
SUGGEST
A
DIRECT
RECOGNTION
MECHANISM
.....................................................................................................70
3.3.2
INTERACTION
OF
AVR
AI
3-V2
WITH
MLA13
DOES
NOT
LEAD
TO
THE
RECEPTOR S
ACTIVATION
...........................................................................................................................
72
3.4
IDENTIFYING
EFFECTOR
AND
RECEPTOR
AMINO
ACID
POSITIONS,
RESPONSIBLE
FOR
THE
SPECIFIC
RECOGNITION
OF
THE
ALLELIC
AVR
AIO
AND
AVR
A
22
BY
MLA10
AND
MLA22
.................................
73
3.4.1
THE
ALLELIC
BGH
EFFECTORS
AVR
AIO
AND
AVR
A
22
CONSTITUTE
A
BALANCED
POLYMORPHISM
IN
THE
BGH
POPULATION
.............................................................................
73
III
3.4.2 THE
LRR
DOMAIN
OF
MLA10
AND
MLA22
DETERMINES
RECOGNITION
SPECIFICITY
FOR
THE
AVR
AIO
AND
AVR
AZZ
EFFECTOR
ALLELES
............................................................................
74
3.4.3
MULTIPLE
AMINO
ACID
POSITIONS
IN
THE
ALLELIC
AVR
AIO
AND
AVR
AZZ
EFFECTORS
DETERMINE
THE
SPECIFIC
RECOGNITION
BY
THE
MLA10
AND
MLA22
RECEPTORS
.....................
75
3.4.4
THE
MOST
PROMINENT
AVR
AIO
HAPLOTYPES
OF
POWDERY
MILDEWS
GROWING
ON
WHEAT,
RYE
AND
TRITICALE
ARE
NOT
RECOGNIZED
BY
MLA10
OR
MLA22
.................................
76
4
CONCLUSION
AND
FUTURE
PERSPECTIVE
................................................................................78
5
MATERIAL
AND
METHODS
.....................................................................................................
80
5.1
MATERIALS
...................................................................................................................
80
5.1.1
PLANT
MATERIALS
...................................................................................................
80
5.1.1.1
HORDEUM
VULGARE
..........................................................................................
80
5.1.1.2
NICOTIANA
BENTHAMIANA
................................................................................81
5.1.2
PATHOGENS
..........................................................................................................
81
5.1.2.1
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
(BGH)
...........................................
81
5.1.3
BACTERIAL
STRAINS
.................................................................................................81
5.1.3.1
ESCHERISCHIA
COLI
............................................................................................81
5.1.3.2
AGROBACTERIUM
TUMEFACIENS
........................................................................81
5.1.3.3
SACCHAROMYCES
CEREVISAE
YEAST
STRAINS
........................................................
82
5.1.4
VECTORS
...............................................................................................................
82
1.1.1
OLIGONUCLEOTIDES
.......................
94
5.1.5
ENZYMES
.............................................................................................................98
5.1.5.1
RESTRICTION
ENZYMES
......................................................................................98
5.1.5.2
NUCLEIC
ACID
MODIFYING
ENZYMES
.................................................................98
5.1.6
CHEMICALS
...........................................................................................................
99
5.1.7
ANTIBIOTICS
(STOCK
SOLUTIONS)
...........................................................................
100
5.1.8
MEDIA
...............................................................................................................
100
5.1.9
ANTIBODIES
........................................................................................................
101
IV
5.1.10
BUFFERS
AND
SOLUTIONS
....................................................................................
102
5.2
METHODS
...................................................................................................................
105
5.2.1
MAINTAINANCE
AND
CULTIVATION
OF
BARLEY
PLANTS
...............................................
105
5.2.1.1
COLLECTION,
PURIFICATION
AND
MAINTAINANCE
OF
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
ISOLATES
..............................................................................................
105
5.2.1.2
TRANSIENT
GENE
EXPRESSION
AND
CELL
DEATH
ASSAYS
IN
BARLEY
PROTOPLASTS...
105
5.2.1.3
TRANSIENT
GENE
EXPRESSION
IN
NICOTIANA
BENTHAMIANA
LEAVES
BY
AGROBACTERIUM-MEDIATED
TRANSFORMATION
.................................................................
106
5.2.1.4
YEAST
TWO-HYBRID
ASSAY
................................................................................
107
5.2.2
BIOCHEMICAL
METHODS
......................................................................................
107
5.2.2.1
EXTRACTION
OF
TOTAL
PROTEIN
FROM
N.
BENTHAMIANA
.....................................
107
5.2.2.2
GFP
-
IMMUNOPRECIPITATION
........................................................................
108
5.2.2.3
DENATURING
SODIUM
DODECYL
SULFATE-POLYACRYLAMIDE
GEL
ELECTROPHORESIS
(SDS-PAGE)
...................................................................................................................
108
5.2.2.4
PROTEIN
DETECTION
BY
IMMUNOBLOTTING
(WESTERN
BLOT)
..............................
109
5.2.3
MOLECULAR
BIOLOGICAL
METHODS
........................................................................
109
5.2.3.1
RNA
EXTRACTION
FROM
BLUMERIA
GRAMINIS
FORMA
SECIALIS
HORDEI
ISOLATES
AND
RNA-SEQ
ANALYSIS
.........................................................................................................
109
5.2.3.2
POLYMERASE
CHAIN
REACTION
(PCR)
...............................................................
110
5.2.3.3
SITE-DIRECTED
MUTAGENESIS
PCR..
.................................................................
110
5.2.3.4
AGAROSE
GEL
ELECTROPHORESIS
OF
DNA
...........................................................
ILL
5.2.3.5
CUTTING
DNA
FRAGMENTS
FROM
THE
GEL
..........................................................
112
5.2.3.6
RESTRICTION
ENDONUCLEASE
DIGESTION
............................................................
112
5.2.3.7
CLONING
OF
DNA
FRAGMENTS
WITH
THE
GATEWAY
TECHNOLOGY
.........................
112
5.2.3.8
SITE-SPECIFIC
RECOMBINATION
OF
DNA
FRAGMENTS
INTO
GATEWAY-COMPATIBLE
DESTINATION
VECTORS
.....................................................................................................
112
5.2.3.9
PREPARATION
OF
CHEMICALLY
COMPETENT
E.COLI
CELLS
......................................
113
V
5.2.3.10
PREPARATION
OF
ELECTRO-COMPETENT
A.
TUMEFACIENS
CELLS
..........................
113
5.2.3.11
TRANSFORMATION
OF
CHEMICALLY
COMPETENT
E.COLI
CELLS
.............................
113
5.2.3.12
TRANSFORMATION
OF
ELECTRO-COMPETENT
A.
TUMEFACIENS
CELLS
...................
113
5.2.3.13
PLASMID
DNA
ISOLATION
FROM
BACTERIA
........................................................
114
5.2.3.14
YEAST
TRANSFORMATION
USING
THE
LITHIUM
ACETATE
METHOD
.......................
114
5.2.4
DATA
ANALYSIS
AND
BIOINFORMATIC
METHODS
......................................................
114
5.2.4.1
CALCULATION
OF
MIA
VIRULENCE
FREQUENCY
AND
AVERAGE
VIRULENCE
COMPLEXITY
PER
ISOLATE
FOR
MIA
......................................................................................................
114
5.2.4.2
IN-SILICO
DNA
SEQUENCE
ANALYSIS
..................................................................
115
5.2.4.3
RNA-SEQ
READ
ALIGNMENT
AND
VARIANT
CALLING
(DESCRIBED
AND
PERFORMED
BY
BARBARA
KRACHER,
SEE
SAUR
ET
AL.,
2019)
.....................................................................
115
5.2.4.4
POPULATION
STRUCTURE
AND
GENETIC
ASSOCIATION
ANALYSIS
OF
BGH
ISOLATES
(DESCRIBED
AND
PERFORMED
BY
BARBARA
KRACHER,
SEE
SAUR
ET
AL.,
2019)
.....................
117
6
SUPPLEMENTARY
FIGURES
..................................................................................................
119
7
LITERATURE
........................................................................................................................
131
ACKNOWLEDGEMENT
...............................................................................152
ERKLARUNG
...............................................................................................153
VI
|
adam_txt |
TABLE
OF
CONTENTS
TABLE
OF
CONTENTS
.
I
LIST
OF
FIGURES.
VII
LIST
OF
TABLES
.
IX
LIST
OF
ABBREVIATIONS
.
X
ABSTRACT
.XII
ZUSAMMENFASSUNG.
XIII
1
INTRODUCTION
.
1
1.1
GENERAL
INTRODUCTION
OF
THE
PLANT
IMMUNE
SYSTEM
.
1
1.1.1
PATTERN-TRIGGERED
IMMUNITY
(PTI)
.
1
1.1.2
EFFECTOR-TRIGGERED
SUSCEPTIBILITY
(ETS)
.
3
1.1.3
EFFECTOR-TRIGGERED
IMMUNITY
(ETI)
.
3
1.1.4
NLR
GENE
ENGINEERING
AS
A
TOOL
FOR
PLANT
RESISTANCE
BREEDING
.
4
1.2
NLR-MEDIATED
IMMUNITY
.
5
1.2.1
NLR
PROTEIN
ARCHITECTURE
AND
FUNCTION
.
5
1.2.2
MECHANISMS
OF
NLR-MEDIATED
EFFECTOR
RECOGNITION
.
7
1.2.2.1
INDIRECT
RECOGNITION
OF
EFFECTORS
.
8
1.2.2.1.1
NLRS
THAT
MONITOR
GUARDS
.
8
1.2.2.1.2
NLRS
THAT
MONITOR
DECOYS
.
8
1.2.2.2
DIRECT
RECOGNITION
OF
EFFECTORS
.
9
1.2.2.2.1
.BY
NLRS
WITH
AN
INTEGRATED
DECOY
DOMAIN
.
9
1.2.2.2.2
.BY
NLRS
WITHOUT
AN
APPARENT
INTEGRATED
DECOY
DOMAIN
.
10
1.3
DESCRIPTION
OF
THE
BARLEY
MIA
-
POWDERY
MILDEW
AVR
A
PLANT-PATHOGEN
INTERACTION
ON
THE
MOLECULAR
AND
GENETIC
LEVEL
.
13
1.3.1
THE
BARLEY
MILDEW
LOCUS
A
(MIA)
.
13
1.3.1.1
MIA
CONFERS
RESISTANCE
TO
DIVERSE
FUNGAL
PATHOGENS
.
13
1.3.1.2
CONSERVATION
OF
THE
MLA-MEDIATED
IMMUNE
SIGNALING
MECHANISM
.
14
1.3.2
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDE!
(BGH)
.
14
1.3.2.1
LIFECYCLE
AND
POPULATION
STRUCTURE
.
14
1.3.2.2
GENOME
.
16
1.3.2.3
EFFECTOROME
.
16
1.3.3
SEQUENCE-UNRELATED
BGH
AVR
A
EFFECTORS
ARE
SPECIFICALLY
RECOGNIZED
BY
BARLEY
MLA
RECEPTORS
.
17
1.4
AIM
OF
THESIS
.
21
2
RESULTS
.
22
2.1
POPULATION
STRUCTURE
ANALYSIS
OF
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
AND
A
TRANSCRIPTOME-WIDE
ASSOCIATION
STUDY
LEAD
TO
THE
IDENTIFICATION
OF
NOVEL
AVR
A
GENE
CANDIDATES
.
23
2.1.1
INTRODUCTION
.
23
2.1.2
A
LOCAL
BGH
POPULATION
FROM
GERMANY
EXHIBITS
A
HIGH
AVR
A
DIVERSITY
AND
HIGH
MIA
VIRULENCE
FREQUENCIES
.
25
2.1.3
TRANSCRIPTOME-WIDE
ASSOCIATION
STUDY
AND
BGH
GENOME
ANALYSIS
IDENTIFIES
CANDIDATE
AVR
A
3,
AVR
A
6,
AVR
0
7,
AVR
0
9,
AVR
0
IO
AND
AVR
O
22
EFFECTOR
GENES.
33
2.2
VALIDATION
OF
A
VR
A
CANDIDATES
BY
TRANSIENT
CO-EXPRESSION
WITH
THEIR
CORRESPONDING
MIA
RECEPTOR
.
43
2.2.1
INTRODUCTION
.
43
2.2.2
VALIDATION
OF
MLA-AVR
A
RECEPTOR-EFFECTOR
PAIRS
BY
TRANSIENT
CO-EXPRESSION
ASSAYS
IN
BARLEY
PROTOPLASTS
AND
NICOTIANA
BENTHAMIANA
.
44
2.2.3
INTERACTION
OF
MLA
RECEPTORS
WITH
AVR
A
EFFECTORS
IN
YEAST
SUGGESTS
A
DIRECT
RECOGNITION
MECHANISM
.
51
2.3
IDENTIFYING
EFFECTOR
AND
RECEPTOR
AMINO
ACID
POSITIONS
RESPONSIBLE
FOR
THE
SPECIFIC
RECOGNITION
OF
THE
ALLELIC
AVR
AIO
AND
AVR
A
22
BY
MLA10
AND
MLA22
.54
II
2.3.1
INTRODUCTION
.
54
2.3.2
THE
LRR
DOMAIN
OF
MLALO
AND
MLA22
ENCODES
THE
RECOGNITION
SPECIFICITY
FOR
AVR
AIO
OR
AVR
A
22,
RESPECTIVELY
.54
2.3.3
IDENTIFICATION
OF
AVR
AIO
AND
AVR
A
22
RESIDUES,
WHICH
ARE
SPECIFICALLY
RECOGNIZED
BY
MLA10
OR
MLA22
.
57
2.3.4
THE
MOST
PROMINENT
AVR
AIO
HAPLOTYPES
IN
THE
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
TRITICI,
B.G.
F.
SP.
TRITICALE
AND
B.G.
F.
SP.
SECALIS
ARE
NOT
RECOGNIZED
BY
MLA10
AND
MLA22
.
62
3
DISCUSSION
.
64
3.1
SUMMARY
.64
3.2
IDENTIFICATION
AND
VALIDATION
OF
NOVEL
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
AVRA
EFFECTOR
GENES
.
65
3.2.1
AN
EXTENDED
COLLECTION
OF
ISOLATES
FROM
A
LOCAL
BGH
POPULATION
FACILITATES
THE
IDENTIFICATION
OF
AVR
A
GENES
.
65
3.2.2
IDENTIFICATION
OF
THE
AVR
A
9,
AVRAIO
AND
A
VR
O
22
BARLEY
POWDERY
MILDEW
EFFECTOR
GENE
CLUSTER
SHOWS
THAT
ALLELIC
MLA
RECEPTORS
CAN
RECOGNIZE
SEQUENCE-RELATED
AND
-
UNRELATED
POWDERY
MILDEW
EFFECTORS
.
67
3.2.3
IMPORTANCE
OF
FUTURE
AVR
03
AND
AVR
0
6
EFFECTOR
GENE
IDENTIFICATION
.
68
3.3
STUDYING
THE
RECOGNITION
MECHANISM
OF
AVR
A
EFFECTORS
BY
MLA
RECEPTORS
.70
3.3.1
MULTIPLE
PAIRS
OF
AVR
A
EFFECTORS
AND
ALLELIC
MLA
RECEPTORS
SUGGEST
A
DIRECT
RECOGNTION
MECHANISM
.70
3.3.2
INTERACTION
OF
AVR
AI
3-V2
WITH
MLA13
DOES
NOT
LEAD
TO
THE
RECEPTOR'S
ACTIVATION
.
72
3.4
IDENTIFYING
EFFECTOR
AND
RECEPTOR
AMINO
ACID
POSITIONS,
RESPONSIBLE
FOR
THE
SPECIFIC
RECOGNITION
OF
THE
ALLELIC
AVR
AIO
AND
AVR
A
22
BY
MLA10
AND
MLA22
.
73
3.4.1
THE
ALLELIC
BGH
EFFECTORS
AVR
AIO
AND
AVR
A
22
CONSTITUTE
A
BALANCED
POLYMORPHISM
IN
THE
BGH
POPULATION
.
73
III
3.4.2 THE
LRR
DOMAIN
OF
MLA10
AND
MLA22
DETERMINES
RECOGNITION
SPECIFICITY
FOR
THE
AVR
AIO
AND
AVR
AZZ
EFFECTOR
ALLELES
.
74
3.4.3
MULTIPLE
AMINO
ACID
POSITIONS
IN
THE
ALLELIC
AVR
AIO
AND
AVR
AZZ
EFFECTORS
DETERMINE
THE
SPECIFIC
RECOGNITION
BY
THE
MLA10
AND
MLA22
RECEPTORS
.
75
3.4.4
THE
MOST
PROMINENT
AVR
AIO
HAPLOTYPES
OF
POWDERY
MILDEWS
GROWING
ON
WHEAT,
RYE
AND
TRITICALE
ARE
NOT
RECOGNIZED
BY
MLA10
OR
MLA22
.
76
4
CONCLUSION
AND
FUTURE
PERSPECTIVE
.78
5
MATERIAL
AND
METHODS
.
80
5.1
MATERIALS
.
80
5.1.1
PLANT
MATERIALS
.
80
5.1.1.1
HORDEUM
VULGARE
.
80
5.1.1.2
NICOTIANA
BENTHAMIANA
.81
5.1.2
PATHOGENS
.
81
5.1.2.1
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
(BGH)
.
81
5.1.3
BACTERIAL
STRAINS
.81
5.1.3.1
ESCHERISCHIA
COLI
.81
5.1.3.2
AGROBACTERIUM
TUMEFACIENS
.81
5.1.3.3
SACCHAROMYCES
CEREVISAE
YEAST
STRAINS
.
82
5.1.4
VECTORS
.
82
1.1.1
OLIGONUCLEOTIDES
.
94
5.1.5
ENZYMES
.98
5.1.5.1
RESTRICTION
ENZYMES
.98
5.1.5.2
NUCLEIC
ACID
MODIFYING
ENZYMES
.98
5.1.6
CHEMICALS
.
99
5.1.7
ANTIBIOTICS
(STOCK
SOLUTIONS)
.
100
5.1.8
MEDIA
.
100
5.1.9
ANTIBODIES
.
101
IV
5.1.10
BUFFERS
AND
SOLUTIONS
.
102
5.2
METHODS
.
105
5.2.1
MAINTAINANCE
AND
CULTIVATION
OF
BARLEY
PLANTS
.
105
5.2.1.1
COLLECTION,
PURIFICATION
AND
MAINTAINANCE
OF
BLUMERIA
GRAMINIS
FORMA
SPECIALIS
HORDEI
ISOLATES
.
105
5.2.1.2
TRANSIENT
GENE
EXPRESSION
AND
CELL
DEATH
ASSAYS
IN
BARLEY
PROTOPLASTS.
105
5.2.1.3
TRANSIENT
GENE
EXPRESSION
IN
NICOTIANA
BENTHAMIANA
LEAVES
BY
AGROBACTERIUM-MEDIATED
TRANSFORMATION
.
106
5.2.1.4
YEAST
TWO-HYBRID
ASSAY
.
107
5.2.2
BIOCHEMICAL
METHODS
.
107
5.2.2.1
EXTRACTION
OF
TOTAL
PROTEIN
FROM
N.
BENTHAMIANA
.
107
5.2.2.2
GFP
-
IMMUNOPRECIPITATION
.
108
5.2.2.3
DENATURING
SODIUM
DODECYL
SULFATE-POLYACRYLAMIDE
GEL
ELECTROPHORESIS
(SDS-PAGE)
.
108
5.2.2.4
PROTEIN
DETECTION
BY
IMMUNOBLOTTING
(WESTERN
BLOT)
.
109
5.2.3
MOLECULAR
BIOLOGICAL
METHODS
.
109
5.2.3.1
RNA
EXTRACTION
FROM
BLUMERIA
GRAMINIS
FORMA
SECIALIS
HORDEI
ISOLATES
AND
RNA-SEQ
ANALYSIS
.
109
5.2.3.2
POLYMERASE
CHAIN
REACTION
(PCR)
.
110
5.2.3.3
SITE-DIRECTED
MUTAGENESIS
PCR.
.
110
5.2.3.4
AGAROSE
GEL
ELECTROPHORESIS
OF
DNA
.
ILL
5.2.3.5
CUTTING
DNA
FRAGMENTS
FROM
THE
GEL
.
112
5.2.3.6
RESTRICTION
ENDONUCLEASE
DIGESTION
.
112
5.2.3.7
CLONING
OF
DNA
FRAGMENTS
WITH
THE
GATEWAY
TECHNOLOGY
.
112
5.2.3.8
SITE-SPECIFIC
RECOMBINATION
OF
DNA
FRAGMENTS
INTO
GATEWAY-COMPATIBLE
DESTINATION
VECTORS
.
112
5.2.3.9
PREPARATION
OF
CHEMICALLY
COMPETENT
E.COLI
CELLS
.
113
V
5.2.3.10
PREPARATION
OF
ELECTRO-COMPETENT
A.
TUMEFACIENS
CELLS
.
113
5.2.3.11
TRANSFORMATION
OF
CHEMICALLY
COMPETENT
E.COLI
CELLS
.
113
5.2.3.12
TRANSFORMATION
OF
ELECTRO-COMPETENT
A.
TUMEFACIENS
CELLS
.
113
5.2.3.13
PLASMID
DNA
ISOLATION
FROM
BACTERIA
.
114
5.2.3.14
YEAST
TRANSFORMATION
USING
THE
LITHIUM
ACETATE
METHOD
.
114
5.2.4
DATA
ANALYSIS
AND
BIOINFORMATIC
METHODS
.
114
5.2.4.1
CALCULATION
OF
MIA
VIRULENCE
FREQUENCY
AND
AVERAGE
VIRULENCE
COMPLEXITY
PER
ISOLATE
FOR
MIA
.
114
5.2.4.2
IN-SILICO
DNA
SEQUENCE
ANALYSIS
.
115
5.2.4.3
RNA-SEQ
READ
ALIGNMENT
AND
VARIANT
CALLING
(DESCRIBED
AND
PERFORMED
BY
BARBARA
KRACHER,
SEE
SAUR
ET
AL.,
2019)
.
115
5.2.4.4
POPULATION
STRUCTURE
AND
GENETIC
ASSOCIATION
ANALYSIS
OF
BGH
ISOLATES
(DESCRIBED
AND
PERFORMED
BY
BARBARA
KRACHER,
SEE
SAUR
ET
AL.,
2019)
.
117
6
SUPPLEMENTARY
FIGURES
.
119
7
LITERATURE
.
131
ACKNOWLEDGEMENT
.152
ERKLARUNG
.153
VI |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bauer, Saskia |
author_GND | (DE-588)1210201216 |
author_facet | Bauer, Saskia |
author_role | aut |
author_sort | Bauer, Saskia |
author_variant | s b sb |
building | Verbundindex |
bvnumber | BV047036742 |
ctrlnum | (OCoLC)1202812572 (DE-599)DNB1217346309 |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01385nam a2200349 c 4500</leader><controlfield tag="001">BV047036742</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">201201s2020 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,H11</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1217346309</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="c">Broschur</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1202812572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1217346309</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bauer, Saskia</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1210201216</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors</subfield><subfield code="c">vorgelegt von Saskia Bauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Köln</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 153 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">30 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität zu Köln</subfield><subfield code="d">2019</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1217346309/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032443895&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032443895</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047036742 |
illustrated | Illustrated |
index_date | 2024-07-03T16:04:01Z |
indexdate | 2024-07-10T09:00:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032443895 |
oclc_num | 1202812572 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-83 |
physical | XIV, 153 Seiten Illustrationen 30 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
record_format | marc |
spelling | Bauer, Saskia Verfasser (DE-588)1210201216 aut Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors vorgelegt von Saskia Bauer Köln 2020 XIV, 153 Seiten Illustrationen 30 cm txt rdacontent n rdamedia nc rdacarrier Dissertation Universität zu Köln 2019 (DE-588)4113937-9 Hochschulschrift gnd-content B:DE-101 application/pdf https://d-nb.info/1217346309/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032443895&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bauer, Saskia Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors |
subject_GND | (DE-588)4113937-9 |
title | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors |
title_auth | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors |
title_exact_search | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors |
title_exact_search_txtP | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors |
title_full | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors vorgelegt von Saskia Bauer |
title_fullStr | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors vorgelegt von Saskia Bauer |
title_full_unstemmed | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors vorgelegt von Saskia Bauer |
title_short | Specific recognition of sequence-related and -unrelated powdery mildew AVRA effectors by allelic barley MLA immune receptors |
title_sort | specific recognition of sequence related and unrelated powdery mildew avra effectors by allelic barley mla immune receptors |
topic_facet | Hochschulschrift |
url | https://d-nb.info/1217346309/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032443895&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bauersaskia specificrecognitionofsequencerelatedandunrelatedpowderymildewavraeffectorsbyallelicbarleymlaimmunereceptors |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis