Artificial Intelligence Driven by Machine Learning and Deep Learning:
Intro -- Contents -- Preface -- Acknowledgment -- Chapter 1 -- Artificial Intelligence -- 1.1. Introduction -- 1.2. History of Artificial Intelligence -- 1.3. Weak Artificial Intelligence (WAI) -- 1.3.1. And It Is Indeed a Possibility. The Signs Are All There -- 1.3.2. Technological Singularity -- 1...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Nova Science Publishers, Incorporated
2020
|
Schriftenreihe: | Computer Science, Technology and Applications
|
Schlagworte: | |
Online-Zugang: | FWS01 FWS02 |
Zusammenfassung: | Intro -- Contents -- Preface -- Acknowledgment -- Chapter 1 -- Artificial Intelligence -- 1.1. Introduction -- 1.2. History of Artificial Intelligence -- 1.3. Weak Artificial Intelligence (WAI) -- 1.3.1. And It Is Indeed a Possibility. The Signs Are All There -- 1.3.2. Technological Singularity -- 1.4. Artificial General Intelligence (AGI) -- 1.4.1. Existential Risk from Artificial General Intelligence -- 1.5. Natural Language Processing (NLP) -- 1.5.1. How Does NLP Work? -- 1.6. Cognitive Science and Cognitive Linguistics -- 1.7. Big Data -- 1.7.1. Big Data History and Current Considerations -- 1.7.2. What Are Big Data and Big Data Analytics? -- 1.7.3. Why Is Big Data Important? -- 1.7.4. Where Big Data Is Used and Who Uses it -- 1.7.5. How Does Big Data Work -- References -- Chapter 2 -- Machine Learning -- 2.1. Introduction -- 2.2. Problem Solving with Machine Learning -- 2.3. Estimating Probability Distributions -- 2.4. Linear Classifiers and Perceptron Algorithm -- 2.5. Decision Trees and Model Selection -- 2.6. Random Forest and How Does It Work -- 2.7. Overfitting in Decision Trees -- 2.8. Learning with Kernel Machines and Support Vector Machines -- 2.9. Debugging and Improving Machine Learning -- 2.10. Machine Learning Logistic (MLL) -- 2.11. Why Machine Learning -- 2.12. Machine Learning Boosting eCommerce -- 2.12.1. Eight Significant Applications of Machine Learning in eCommerce -- 2.12.2. Conclusion of Machine Learning and eCommerce -- References -- Chapter 3 -- Deep Learning -- 3.1. Introduction -- 3.2. Neural Networks Three Classes (MLP, CNN and RNN) -- 3.2.1. Multi-Layer Perceptrons (MLPs) -- 3.2.1.1. When to Use Multi-Layer Perceptrons (MLPs)? -- 3.2.2. Convolutional Neural Networks (CNNs) -- 3.2.2.1. When to Use Convolutional Neural Networks (CNNs)? -- 3.2.3. Recurrent Neural Networks (RNNs) |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (457 Seiten) |
ISBN: | 9781536183672 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV047031093 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201126s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781536183672 |9 978-1-5361-8367-2 | ||
035 | |a (OCoLC)1224484139 | ||
035 | |a (DE-599)BVBBV047031093 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-863 |a DE-862 | ||
100 | 1 | |a Zohuri, Bahman |e Verfasser |0 (DE-588)1081323353 |4 aut | |
245 | 1 | 0 | |a Artificial Intelligence Driven by Machine Learning and Deep Learning |c Bahman Zohuri and Siamak Zadeh |
264 | 1 | |a New York |b Nova Science Publishers, Incorporated |c 2020 | |
300 | |a 1 Online-Ressource (457 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Computer Science, Technology and Applications | |
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | 3 | |a Intro -- Contents -- Preface -- Acknowledgment -- Chapter 1 -- Artificial Intelligence -- 1.1. Introduction -- 1.2. History of Artificial Intelligence -- 1.3. Weak Artificial Intelligence (WAI) -- 1.3.1. And It Is Indeed a Possibility. The Signs Are All There -- 1.3.2. Technological Singularity -- 1.4. Artificial General Intelligence (AGI) -- 1.4.1. Existential Risk from Artificial General Intelligence -- 1.5. Natural Language Processing (NLP) -- 1.5.1. How Does NLP Work? -- 1.6. Cognitive Science and Cognitive Linguistics -- 1.7. Big Data -- 1.7.1. Big Data History and Current Considerations -- 1.7.2. What Are Big Data and Big Data Analytics? -- 1.7.3. Why Is Big Data Important? -- 1.7.4. Where Big Data Is Used and Who Uses it -- 1.7.5. How Does Big Data Work -- References -- Chapter 2 -- Machine Learning -- 2.1. Introduction -- 2.2. Problem Solving with Machine Learning -- 2.3. Estimating Probability Distributions -- 2.4. Linear Classifiers and Perceptron Algorithm -- 2.5. Decision Trees and Model Selection -- 2.6. Random Forest and How Does It Work -- 2.7. Overfitting in Decision Trees -- 2.8. Learning with Kernel Machines and Support Vector Machines -- 2.9. Debugging and Improving Machine Learning -- 2.10. Machine Learning Logistic (MLL) -- 2.11. Why Machine Learning -- 2.12. Machine Learning Boosting eCommerce -- 2.12.1. Eight Significant Applications of Machine Learning in eCommerce -- 2.12.2. Conclusion of Machine Learning and eCommerce -- References -- Chapter 3 -- Deep Learning -- 3.1. Introduction -- 3.2. Neural Networks Three Classes (MLP, CNN and RNN) -- 3.2.1. Multi-Layer Perceptrons (MLPs) -- 3.2.1.1. When to Use Multi-Layer Perceptrons (MLPs)? -- 3.2.2. Convolutional Neural Networks (CNNs) -- 3.2.2.1. When to Use Convolutional Neural Networks (CNNs)? -- 3.2.3. Recurrent Neural Networks (RNNs) | |
653 | 0 | |a Electronic books | |
700 | 1 | |a Zadeh, Siamak |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-5361-8314-6 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032438364 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6376512 |l FWS01 |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6376512 |l FWS02 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 858912 |
---|---|
_version_ | 1806193411215065088 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Zohuri, Bahman Zadeh, Siamak |
author_GND | (DE-588)1081323353 |
author_facet | Zohuri, Bahman Zadeh, Siamak |
author_role | aut aut |
author_sort | Zohuri, Bahman |
author_variant | b z bz s z sz |
building | Verbundindex |
bvnumber | BV047031093 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1224484139 (DE-599)BVBBV047031093 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03261nmm a22003611c 4500</leader><controlfield tag="001">BV047031093</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201126s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781536183672</subfield><subfield code="9">978-1-5361-8367-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224484139</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047031093</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zohuri, Bahman</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1081323353</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial Intelligence Driven by Machine Learning and Deep Learning</subfield><subfield code="c">Bahman Zohuri and Siamak Zadeh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Nova Science Publishers, Incorporated</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (457 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer Science, Technology and Applications</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Contents -- Preface -- Acknowledgment -- Chapter 1 -- Artificial Intelligence -- 1.1. Introduction -- 1.2. History of Artificial Intelligence -- 1.3. Weak Artificial Intelligence (WAI) -- 1.3.1. And It Is Indeed a Possibility. The Signs Are All There -- 1.3.2. Technological Singularity -- 1.4. Artificial General Intelligence (AGI) -- 1.4.1. Existential Risk from Artificial General Intelligence -- 1.5. Natural Language Processing (NLP) -- 1.5.1. How Does NLP Work? -- 1.6. Cognitive Science and Cognitive Linguistics -- 1.7. Big Data -- 1.7.1. Big Data History and Current Considerations -- 1.7.2. What Are Big Data and Big Data Analytics? -- 1.7.3. Why Is Big Data Important? -- 1.7.4. Where Big Data Is Used and Who Uses it -- 1.7.5. How Does Big Data Work -- References -- Chapter 2 -- Machine Learning -- 2.1. Introduction -- 2.2. Problem Solving with Machine Learning -- 2.3. Estimating Probability Distributions -- 2.4. Linear Classifiers and Perceptron Algorithm -- 2.5. Decision Trees and Model Selection -- 2.6. Random Forest and How Does It Work -- 2.7. Overfitting in Decision Trees -- 2.8. Learning with Kernel Machines and Support Vector Machines -- 2.9. Debugging and Improving Machine Learning -- 2.10. Machine Learning Logistic (MLL) -- 2.11. Why Machine Learning -- 2.12. Machine Learning Boosting eCommerce -- 2.12.1. Eight Significant Applications of Machine Learning in eCommerce -- 2.12.2. Conclusion of Machine Learning and eCommerce -- References -- Chapter 3 -- Deep Learning -- 3.1. Introduction -- 3.2. Neural Networks Three Classes (MLP, CNN and RNN) -- 3.2.1. Multi-Layer Perceptrons (MLPs) -- 3.2.1.1. When to Use Multi-Layer Perceptrons (MLPs)? -- 3.2.2. Convolutional Neural Networks (CNNs) -- 3.2.2.1. When to Use Convolutional Neural Networks (CNNs)? -- 3.2.3. Recurrent Neural Networks (RNNs)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zadeh, Siamak</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-5361-8314-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032438364</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6376512</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6376512</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047031093 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:02:18Z |
indexdate | 2024-08-01T15:51:04Z |
institution | BVB |
isbn | 9781536183672 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032438364 |
oclc_num | 1224484139 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (457 Seiten) |
psigel | ZDB-30-PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Nova Science Publishers, Incorporated |
record_format | marc |
series2 | Computer Science, Technology and Applications |
spellingShingle | Zohuri, Bahman Zadeh, Siamak Artificial Intelligence Driven by Machine Learning and Deep Learning |
title | Artificial Intelligence Driven by Machine Learning and Deep Learning |
title_auth | Artificial Intelligence Driven by Machine Learning and Deep Learning |
title_exact_search | Artificial Intelligence Driven by Machine Learning and Deep Learning |
title_exact_search_txtP | Artificial Intelligence Driven by Machine Learning and Deep Learning |
title_full | Artificial Intelligence Driven by Machine Learning and Deep Learning Bahman Zohuri and Siamak Zadeh |
title_fullStr | Artificial Intelligence Driven by Machine Learning and Deep Learning Bahman Zohuri and Siamak Zadeh |
title_full_unstemmed | Artificial Intelligence Driven by Machine Learning and Deep Learning Bahman Zohuri and Siamak Zadeh |
title_short | Artificial Intelligence Driven by Machine Learning and Deep Learning |
title_sort | artificial intelligence driven by machine learning and deep learning |
work_keys_str_mv | AT zohuribahman artificialintelligencedrivenbymachinelearninganddeeplearning AT zadehsiamak artificialintelligencedrivenbymachinelearninganddeeplearning |