Artificial Intelligence Driven by Machine Learning and Deep Learning:

Intro -- Contents -- Preface -- Acknowledgment -- Chapter 1 -- Artificial Intelligence -- 1.1. Introduction -- 1.2. History of Artificial Intelligence -- 1.3. Weak Artificial Intelligence (WAI) -- 1.3.1. And It Is Indeed a Possibility. The Signs Are All There -- 1.3.2. Technological Singularity -- 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zohuri, Bahman (VerfasserIn), Zadeh, Siamak (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York Nova Science Publishers, Incorporated 2020
Schriftenreihe:Computer Science, Technology and Applications
Schlagworte:
Online-Zugang:FWS01
FWS02
Zusammenfassung:Intro -- Contents -- Preface -- Acknowledgment -- Chapter 1 -- Artificial Intelligence -- 1.1. Introduction -- 1.2. History of Artificial Intelligence -- 1.3. Weak Artificial Intelligence (WAI) -- 1.3.1. And It Is Indeed a Possibility. The Signs Are All There -- 1.3.2. Technological Singularity -- 1.4. Artificial General Intelligence (AGI) -- 1.4.1. Existential Risk from Artificial General Intelligence -- 1.5. Natural Language Processing (NLP) -- 1.5.1. How Does NLP Work? -- 1.6. Cognitive Science and Cognitive Linguistics -- 1.7. Big Data -- 1.7.1. Big Data History and Current Considerations -- 1.7.2. What Are Big Data and Big Data Analytics? -- 1.7.3. Why Is Big Data Important? -- 1.7.4. Where Big Data Is Used and Who Uses it -- 1.7.5. How Does Big Data Work -- References -- Chapter 2 -- Machine Learning -- 2.1. Introduction -- 2.2. Problem Solving with Machine Learning -- 2.3. Estimating Probability Distributions -- 2.4. Linear Classifiers and Perceptron Algorithm -- 2.5. Decision Trees and Model Selection -- 2.6. Random Forest and How Does It Work -- 2.7. Overfitting in Decision Trees -- 2.8. Learning with Kernel Machines and Support Vector Machines -- 2.9. Debugging and Improving Machine Learning -- 2.10. Machine Learning Logistic (MLL) -- 2.11. Why Machine Learning -- 2.12. Machine Learning Boosting eCommerce -- 2.12.1. Eight Significant Applications of Machine Learning in eCommerce -- 2.12.2. Conclusion of Machine Learning and eCommerce -- References -- Chapter 3 -- Deep Learning -- 3.1. Introduction -- 3.2. Neural Networks Three Classes (MLP, CNN and RNN) -- 3.2.1. Multi-Layer Perceptrons (MLPs) -- 3.2.1.1. When to Use Multi-Layer Perceptrons (MLPs)? -- 3.2.2. Convolutional Neural Networks (CNNs) -- 3.2.2.1. When to Use Convolutional Neural Networks (CNNs)? -- 3.2.3. Recurrent Neural Networks (RNNs)
Beschreibung:Description based on publisher supplied metadata and other sources
Beschreibung:1 Online-Ressource (457 Seiten)
ISBN:9781536183672