Nanoantennas and Plasmonics: Modelling, design and fabrication
Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Campbell, Sawyer D. (HerausgeberIn), Kang, Lei (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Stevenage Institution of Engineering & Technology, IET [2020]
Schriftenreihe:ACES Series on Computational andNumerical Modelling in Electrical Engineering
Online-Zugang:UBY01
UER01
Beschreibung:Intro -- Contents -- About the editors -- Preface -- 1. Optical properties of plasmonic nanoloop antennas | Jogender Nagar, Ryan J. Chaky, Arnold F. McKinley, Mario F. Pantoja and Douglas H. Werner -- 1.1 Analytical theory of impedance-loaded nanoloops -- 1.1.1 Material characteristics -- 1.1.2 The closed thin-wire loop -- 1.1.3 The loaded loop -- 1.1.4 Radiation from a driven thin-wire loop antenna -- 1.1.5 The sub-wavelength resonance of loops and rings -- 1.2 Analytical theory of mutual coupling in nanoloops -- 1.2.1 Theory -- 1.2.2 Results -- 1.3 Broadband superdirective radiation modes in nanoloops -- 1.4 Trade-offs in electrical size, directivity, and gain for nanoloops -- 1.4.1 Optimizing a single nanoloop -- 1.4.2 Optimizing arrays of nanoloops -- 1.5 Elliptical nanoloops -- 1.5.1 Special cases -- 1.5.2 The electrically small elliptical loop antenna -- 1.6 Summary -- References -- 2. Passive and active nano cylinders for enhanced and directive radiation and scattering phenomena | Samel Arslanagic and Richard W. Ziolkowski -- 2.1 Introduction and chapter overview -- 2.2 Configurations, materials, gain model, and analysis methods -- 2.2.1 Configurations -- 2.2.2 Materials -- 2.2.3 Gain model -- 2.2.4 Analysis methods -- 2.3 Symmetric and asymmetric CNPs -- 2.3.1 Dipole-based symmetric 2D CNPs -- 2.3.2 Why go for something else? Asymmetric, holey and cake, active 2D CNPs -- 2.3.3 Eccentric three-region CNPs -- 2.4 Symmetric and asymmetric active 3D CNPs -- 2.4.1 Symmetric active 3D CNPs -- 2.4.2 Asymmetric, holey and cake, active 3D CNPs -- 2.5 Symmetric multi-layer NPs -- 2.6 Conclusions and summary -- References -- 3. Coherent control of light scattering | Alex Krasnok and Andrea Alu -- 3.1 Poles and zeros of the bS matrix -- 3.2 Coherent perfect absorption -- 3.3 Virtual perfect absorption
3.4 Coherently enhanced wireless power transfer -- 3.5 Conclusions -- References -- 4. Time domain modeling with the generalized dispersive material model | Ludmila J. Prokopeva, William D. Henshaw, Donald W. Schwendeman and Alexander V. Kildishev -- 4.1 GDM model -- 4.1.1 Maxwell's equations -- 4.1.2 The GDM model -- 4.1.3 The dispersion relation for the GDM model -- 4.1.4 Special GDM cases: classical dispersion models -- 4.1.5 GDM fits -- 4.2 Numerical implementation of the GDM model -- 4.2.1 Yee-based ADE GDM scheme -- 4.2.2 Yee-based recursive convolution GDM scheme -- 4.2.3 Yee-based universal GDM scheme -- 4.3 Numerical results -- 4.4 Conclusions -- References -- 5. Inverse-design of plasmonic and dielectric optical nanoantennas | Sawyer. D. Campbell, Eric B. Whiting, Danny Z. Zhu and Douglas H. Werner -- 5.1 Introduction -- 5.2 Optimization methods for plasmonic and dielectric optical nanoantennas -- 5.2.1 Local optimization algorithms -- 5.2.2 Global optimization algorithms -- 5.2.3 Multi-objective optimization algorithms -- 5.2.4 Applied nanoantenna and meta-device optimization -- 5.3 Optimized plasmonic nanoantennas for large field enhancement -- 5.4 Nanoantenna optimization for phase-gradient metasurface applications -- 5.4.1 Two-dimensional dielectric nanoantennas -- 5.4.2 Three-dimensional metallodielectric nanoantennas -- 5.5 Conclusions -- Acknowledgments -- References -- 6. Multi-level carrier kinetics models for computational nanophotonics | Shaimaa I. Azzam and Alexander V. Kildishev -- 6.1 Gain media models -- 6.2 Saturable absorbing media -- 6.2.1 Saturable absorption models with MRE -- 6.2.2 Modeling reverse saturable absorption with MRE -- 6.3 Multiphoton absorption models -- References -- 7. Nonlinear multipolar interference: from nonreciprocal directionality to one-way nonlinear mirror | Ekaterina Poutrina and Augustine Urbas
7.1 Introduction -- 7.2 Single-element scattering response: An overview -- 7.2.1 Expressions for the scattered field -- 7.2.2 Linear multipolar interference -- 7.2.3 Nonlinear multipolar interference -- 7.3 Retrieval of the effective nonlinear multipolar polarizabilities -- 7.3.1 Retrieval of multipolar partial waves -- 7.3.2 Retrieval of nonlinear magnetoelectric polarizabilities -- 7.4 Single-element scattering response: implementation with physical geometry -- 7.4.1 Linear multipolar polarizabilities of a dimer structure -- 7.4.2 Nonlinear magnetoelectric polarizabilities of a dimer structure -- 7.5 Nonlinear scattering off a magnetoelectric metasurface -- 7.5.1 Nonlinear mirror via difference frequency generation -- 7.5.2 One-way nonlinear mirror via multipolar interference in nonlinearly generated field -- 7.6 Concluding remarks -- References -- 8. Plasmonic metasurfaces for controlling harmonic generations | Shumei Chen, Guixin Li, Thomas Zentgraf and Shuang Zhang -- 8.1 Introduction -- 8.2 Selection rule in harmonic generations for circular polarizations -- 8.3 Binary phase nonlinear metasurfaces -- 8.3.1 Continuous control of nonlinearity phase -- 8.4 Nonlinear metasurface holography -- 8.5 Nonlinear metasurface for intensity control and image encoding -- 8.6 Vortex beam generation in harmonic generation -- 8.7 Nonlinear imaging -- 8.8 Nonlinear planar chiral metasurfaces -- 8.9 Summary and outlook -- References -- 9. Optical nanoantennas for enhanced THz emission | Andrei Gorodetsky, Sergey Lepeshov, Alex Krasnok and Pavel Belov -- 9.1 Introduction -- 9.2 Principles of THz photoconductive antennas and photomixers -- 9.2.1 Methods of coherent THz generation -- 9.2.2 Pulsed THz generation in photoconductive antennas -- 9.2.3 Pulsed THz detection in photoconductive antennas -- 9.2.4 Continuous wave THz generation in photomixers
9.2.5 Effect of the contact electrodes shape on the radiative characteristics of THz photoconductive antennas and photomixers -- 9.2.6 How plasmonic optical nanoantennas can enhance THz generation and detection -- 9.3 Design of optical plasmonic nanoantennas -- 9.4 Results of plasmonic nanoantennas implementation for THz generation enhancement -- 9.4.1 Interdigitated electrodes -- 9.4.2 Plasmon monopole nanoantennas -- 9.4.3 Plasmon dipole nanoantennas -- 9.4.4 2D plasmonic gratings -- 9.4.5 3D plasmonic gratings -- 9.4.6 Comparison of the reviewed approaches -- 9.5 Enhancement of THz detection with nanoantennas -- 9.6 Outlook -- References -- 10. Active photonics based on phase-change materials and reconfigurable nanowire systems | Lei Kang, Liu Liu, Sarah J. Boehm, Lan Lin, Theresa S. Mayer, Christine D. Keating and Douglas H. Werner -- 10.1 Introduction -- 10.2 Phase transition enabled tunable metadevices -- 10.2.1 An electrically actuated VO2-hybrid metadevice -- 10.2.2 Conclusions and future studies -- 10.3 Nanoparticle assembly-based metadevices -- 10.3.1 Reconfigurable IR-polarizer based on nanowire assemblies -- 10.3.2 Conclusions and future studies -- References -- 11. Dancing angels on the point of a needle: nanofabrication for subwavelength optics | Mikhail Y. Shalaginov, Fan Yang, Juejun Hu and Tian Gu -- 11.1 Opening remarks -- 11.2 Standard planar nanofabrication technologies applied to subwavelength optics -- 11.2.1 Materials for subwavelength optics -- 11.2.2 Large-scale manufacturing: a case study of optical metasurfaces -- 11.3 Innovative solutions to nonconventional subwavelength optics designs -- 11.3.1 HAR nanostructures -- 11.3.2 3D structures -- 11.3.3 Fabrication on unconventional substrates -- 11.4 Summary and outlook -- References -- Index
Beschreibung:1 Online-Ressource (471 Seiten)
ISBN:9781785618383

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!