Nanoantennas and Plasmonics: Modelling, design and fabrication
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Stevenage
Institution of Engineering & Technology, IET
[2020]
|
Schriftenreihe: | ACES Series on Computational andNumerical Modelling in Electrical Engineering
|
Online-Zugang: | UBY01 UER01 |
Beschreibung: | Intro -- Contents -- About the editors -- Preface -- 1. Optical properties of plasmonic nanoloop antennas | Jogender Nagar, Ryan J. Chaky, Arnold F. McKinley, Mario F. Pantoja and Douglas H. Werner -- 1.1 Analytical theory of impedance-loaded nanoloops -- 1.1.1 Material characteristics -- 1.1.2 The closed thin-wire loop -- 1.1.3 The loaded loop -- 1.1.4 Radiation from a driven thin-wire loop antenna -- 1.1.5 The sub-wavelength resonance of loops and rings -- 1.2 Analytical theory of mutual coupling in nanoloops -- 1.2.1 Theory -- 1.2.2 Results -- 1.3 Broadband superdirective radiation modes in nanoloops -- 1.4 Trade-offs in electrical size, directivity, and gain for nanoloops -- 1.4.1 Optimizing a single nanoloop -- 1.4.2 Optimizing arrays of nanoloops -- 1.5 Elliptical nanoloops -- 1.5.1 Special cases -- 1.5.2 The electrically small elliptical loop antenna -- 1.6 Summary -- References -- 2. Passive and active nano cylinders for enhanced and directive radiation and scattering phenomena | Samel Arslanagic and Richard W. Ziolkowski -- 2.1 Introduction and chapter overview -- 2.2 Configurations, materials, gain model, and analysis methods -- 2.2.1 Configurations -- 2.2.2 Materials -- 2.2.3 Gain model -- 2.2.4 Analysis methods -- 2.3 Symmetric and asymmetric CNPs -- 2.3.1 Dipole-based symmetric 2D CNPs -- 2.3.2 Why go for something else? Asymmetric, holey and cake, active 2D CNPs -- 2.3.3 Eccentric three-region CNPs -- 2.4 Symmetric and asymmetric active 3D CNPs -- 2.4.1 Symmetric active 3D CNPs -- 2.4.2 Asymmetric, holey and cake, active 3D CNPs -- 2.5 Symmetric multi-layer NPs -- 2.6 Conclusions and summary -- References -- 3. Coherent control of light scattering | Alex Krasnok and Andrea Alu -- 3.1 Poles and zeros of the bS matrix -- 3.2 Coherent perfect absorption -- 3.3 Virtual perfect absorption 3.4 Coherently enhanced wireless power transfer -- 3.5 Conclusions -- References -- 4. Time domain modeling with the generalized dispersive material model | Ludmila J. Prokopeva, William D. Henshaw, Donald W. Schwendeman and Alexander V. Kildishev -- 4.1 GDM model -- 4.1.1 Maxwell's equations -- 4.1.2 The GDM model -- 4.1.3 The dispersion relation for the GDM model -- 4.1.4 Special GDM cases: classical dispersion models -- 4.1.5 GDM fits -- 4.2 Numerical implementation of the GDM model -- 4.2.1 Yee-based ADE GDM scheme -- 4.2.2 Yee-based recursive convolution GDM scheme -- 4.2.3 Yee-based universal GDM scheme -- 4.3 Numerical results -- 4.4 Conclusions -- References -- 5. Inverse-design of plasmonic and dielectric optical nanoantennas | Sawyer. D. Campbell, Eric B. Whiting, Danny Z. Zhu and Douglas H. Werner -- 5.1 Introduction -- 5.2 Optimization methods for plasmonic and dielectric optical nanoantennas -- 5.2.1 Local optimization algorithms -- 5.2.2 Global optimization algorithms -- 5.2.3 Multi-objective optimization algorithms -- 5.2.4 Applied nanoantenna and meta-device optimization -- 5.3 Optimized plasmonic nanoantennas for large field enhancement -- 5.4 Nanoantenna optimization for phase-gradient metasurface applications -- 5.4.1 Two-dimensional dielectric nanoantennas -- 5.4.2 Three-dimensional metallodielectric nanoantennas -- 5.5 Conclusions -- Acknowledgments -- References -- 6. Multi-level carrier kinetics models for computational nanophotonics | Shaimaa I. Azzam and Alexander V. Kildishev -- 6.1 Gain media models -- 6.2 Saturable absorbing media -- 6.2.1 Saturable absorption models with MRE -- 6.2.2 Modeling reverse saturable absorption with MRE -- 6.3 Multiphoton absorption models -- References -- 7. Nonlinear multipolar interference: from nonreciprocal directionality to one-way nonlinear mirror | Ekaterina Poutrina and Augustine Urbas 7.1 Introduction -- 7.2 Single-element scattering response: An overview -- 7.2.1 Expressions for the scattered field -- 7.2.2 Linear multipolar interference -- 7.2.3 Nonlinear multipolar interference -- 7.3 Retrieval of the effective nonlinear multipolar polarizabilities -- 7.3.1 Retrieval of multipolar partial waves -- 7.3.2 Retrieval of nonlinear magnetoelectric polarizabilities -- 7.4 Single-element scattering response: implementation with physical geometry -- 7.4.1 Linear multipolar polarizabilities of a dimer structure -- 7.4.2 Nonlinear magnetoelectric polarizabilities of a dimer structure -- 7.5 Nonlinear scattering off a magnetoelectric metasurface -- 7.5.1 Nonlinear mirror via difference frequency generation -- 7.5.2 One-way nonlinear mirror via multipolar interference in nonlinearly generated field -- 7.6 Concluding remarks -- References -- 8. Plasmonic metasurfaces for controlling harmonic generations | Shumei Chen, Guixin Li, Thomas Zentgraf and Shuang Zhang -- 8.1 Introduction -- 8.2 Selection rule in harmonic generations for circular polarizations -- 8.3 Binary phase nonlinear metasurfaces -- 8.3.1 Continuous control of nonlinearity phase -- 8.4 Nonlinear metasurface holography -- 8.5 Nonlinear metasurface for intensity control and image encoding -- 8.6 Vortex beam generation in harmonic generation -- 8.7 Nonlinear imaging -- 8.8 Nonlinear planar chiral metasurfaces -- 8.9 Summary and outlook -- References -- 9. Optical nanoantennas for enhanced THz emission | Andrei Gorodetsky, Sergey Lepeshov, Alex Krasnok and Pavel Belov -- 9.1 Introduction -- 9.2 Principles of THz photoconductive antennas and photomixers -- 9.2.1 Methods of coherent THz generation -- 9.2.2 Pulsed THz generation in photoconductive antennas -- 9.2.3 Pulsed THz detection in photoconductive antennas -- 9.2.4 Continuous wave THz generation in photomixers 9.2.5 Effect of the contact electrodes shape on the radiative characteristics of THz photoconductive antennas and photomixers -- 9.2.6 How plasmonic optical nanoantennas can enhance THz generation and detection -- 9.3 Design of optical plasmonic nanoantennas -- 9.4 Results of plasmonic nanoantennas implementation for THz generation enhancement -- 9.4.1 Interdigitated electrodes -- 9.4.2 Plasmon monopole nanoantennas -- 9.4.3 Plasmon dipole nanoantennas -- 9.4.4 2D plasmonic gratings -- 9.4.5 3D plasmonic gratings -- 9.4.6 Comparison of the reviewed approaches -- 9.5 Enhancement of THz detection with nanoantennas -- 9.6 Outlook -- References -- 10. Active photonics based on phase-change materials and reconfigurable nanowire systems | Lei Kang, Liu Liu, Sarah J. Boehm, Lan Lin, Theresa S. Mayer, Christine D. Keating and Douglas H. Werner -- 10.1 Introduction -- 10.2 Phase transition enabled tunable metadevices -- 10.2.1 An electrically actuated VO2-hybrid metadevice -- 10.2.2 Conclusions and future studies -- 10.3 Nanoparticle assembly-based metadevices -- 10.3.1 Reconfigurable IR-polarizer based on nanowire assemblies -- 10.3.2 Conclusions and future studies -- References -- 11. Dancing angels on the point of a needle: nanofabrication for subwavelength optics | Mikhail Y. Shalaginov, Fan Yang, Juejun Hu and Tian Gu -- 11.1 Opening remarks -- 11.2 Standard planar nanofabrication technologies applied to subwavelength optics -- 11.2.1 Materials for subwavelength optics -- 11.2.2 Large-scale manufacturing: a case study of optical metasurfaces -- 11.3 Innovative solutions to nonconventional subwavelength optics designs -- 11.3.1 HAR nanostructures -- 11.3.2 3D structures -- 11.3.3 Fabrication on unconventional substrates -- 11.4 Summary and outlook -- References -- Index |
Beschreibung: | 1 Online-Ressource (471 Seiten) |
ISBN: | 9781785618383 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047017404 | ||
003 | DE-604 | ||
005 | 20210723 | ||
007 | cr|uuu---uuuuu | ||
008 | 201119s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781785618383 |c pdf |9 978-1-78561-838-3 | ||
024 | 7 | |a 10.1049/SBEW540E |2 doi | |
035 | |a (ZDB-30-PQE)EBC6341979 | ||
035 | |a (OCoLC)1224010634 | ||
035 | |a (DE-599)BVBBV047017404 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-706 | ||
245 | 1 | 0 | |a Nanoantennas and Plasmonics |b Modelling, design and fabrication |c edited by Douglas H. Werner, Sawyer D. Campbell & Lei Kang |
264 | 1 | |a Stevenage |b Institution of Engineering & Technology, IET |c [2020] | |
300 | |a 1 Online-Ressource (471 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a ACES Series on Computational andNumerical Modelling in Electrical Engineering | |
500 | |a Intro -- Contents -- About the editors -- Preface -- 1. Optical properties of plasmonic nanoloop antennas | Jogender Nagar, Ryan J. Chaky, Arnold F. McKinley, Mario F. Pantoja and Douglas H. Werner -- 1.1 Analytical theory of impedance-loaded nanoloops -- 1.1.1 Material characteristics -- 1.1.2 The closed thin-wire loop -- 1.1.3 The loaded loop -- 1.1.4 Radiation from a driven thin-wire loop antenna -- 1.1.5 The sub-wavelength resonance of loops and rings -- 1.2 Analytical theory of mutual coupling in nanoloops -- 1.2.1 Theory -- 1.2.2 Results -- 1.3 Broadband superdirective radiation modes in nanoloops -- 1.4 Trade-offs in electrical size, directivity, and gain for nanoloops -- 1.4.1 Optimizing a single nanoloop -- 1.4.2 Optimizing arrays of nanoloops -- 1.5 Elliptical nanoloops -- 1.5.1 Special cases -- 1.5.2 The electrically small elliptical loop antenna -- 1.6 Summary -- References -- 2. Passive and active nano cylinders for enhanced and directive radiation and scattering phenomena | Samel Arslanagic and Richard W. Ziolkowski -- 2.1 Introduction and chapter overview -- 2.2 Configurations, materials, gain model, and analysis methods -- 2.2.1 Configurations -- 2.2.2 Materials -- 2.2.3 Gain model -- 2.2.4 Analysis methods -- 2.3 Symmetric and asymmetric CNPs -- 2.3.1 Dipole-based symmetric 2D CNPs -- 2.3.2 Why go for something else? Asymmetric, holey and cake, active 2D CNPs -- 2.3.3 Eccentric three-region CNPs -- 2.4 Symmetric and asymmetric active 3D CNPs -- 2.4.1 Symmetric active 3D CNPs -- 2.4.2 Asymmetric, holey and cake, active 3D CNPs -- 2.5 Symmetric multi-layer NPs -- 2.6 Conclusions and summary -- References -- 3. Coherent control of light scattering | Alex Krasnok and Andrea Alu -- 3.1 Poles and zeros of the bS matrix -- 3.2 Coherent perfect absorption -- 3.3 Virtual perfect absorption | ||
500 | |a 3.4 Coherently enhanced wireless power transfer -- 3.5 Conclusions -- References -- 4. Time domain modeling with the generalized dispersive material model | Ludmila J. Prokopeva, William D. Henshaw, Donald W. Schwendeman and Alexander V. Kildishev -- 4.1 GDM model -- 4.1.1 Maxwell's equations -- 4.1.2 The GDM model -- 4.1.3 The dispersion relation for the GDM model -- 4.1.4 Special GDM cases: classical dispersion models -- 4.1.5 GDM fits -- 4.2 Numerical implementation of the GDM model -- 4.2.1 Yee-based ADE GDM scheme -- 4.2.2 Yee-based recursive convolution GDM scheme -- 4.2.3 Yee-based universal GDM scheme -- 4.3 Numerical results -- 4.4 Conclusions -- References -- 5. Inverse-design of plasmonic and dielectric optical nanoantennas | Sawyer. D. Campbell, Eric B. Whiting, Danny Z. Zhu and Douglas H. Werner -- 5.1 Introduction -- 5.2 Optimization methods for plasmonic and dielectric optical nanoantennas -- 5.2.1 Local optimization algorithms -- 5.2.2 Global optimization algorithms -- 5.2.3 Multi-objective optimization algorithms -- 5.2.4 Applied nanoantenna and meta-device optimization -- 5.3 Optimized plasmonic nanoantennas for large field enhancement -- 5.4 Nanoantenna optimization for phase-gradient metasurface applications -- 5.4.1 Two-dimensional dielectric nanoantennas -- 5.4.2 Three-dimensional metallodielectric nanoantennas -- 5.5 Conclusions -- Acknowledgments -- References -- 6. Multi-level carrier kinetics models for computational nanophotonics | Shaimaa I. Azzam and Alexander V. Kildishev -- 6.1 Gain media models -- 6.2 Saturable absorbing media -- 6.2.1 Saturable absorption models with MRE -- 6.2.2 Modeling reverse saturable absorption with MRE -- 6.3 Multiphoton absorption models -- References -- 7. Nonlinear multipolar interference: from nonreciprocal directionality to one-way nonlinear mirror | Ekaterina Poutrina and Augustine Urbas | ||
500 | |a 7.1 Introduction -- 7.2 Single-element scattering response: An overview -- 7.2.1 Expressions for the scattered field -- 7.2.2 Linear multipolar interference -- 7.2.3 Nonlinear multipolar interference -- 7.3 Retrieval of the effective nonlinear multipolar polarizabilities -- 7.3.1 Retrieval of multipolar partial waves -- 7.3.2 Retrieval of nonlinear magnetoelectric polarizabilities -- 7.4 Single-element scattering response: implementation with physical geometry -- 7.4.1 Linear multipolar polarizabilities of a dimer structure -- 7.4.2 Nonlinear magnetoelectric polarizabilities of a dimer structure -- 7.5 Nonlinear scattering off a magnetoelectric metasurface -- 7.5.1 Nonlinear mirror via difference frequency generation -- 7.5.2 One-way nonlinear mirror via multipolar interference in nonlinearly generated field -- 7.6 Concluding remarks -- References -- 8. Plasmonic metasurfaces for controlling harmonic generations | Shumei Chen, Guixin Li, Thomas Zentgraf and Shuang Zhang -- 8.1 Introduction -- 8.2 Selection rule in harmonic generations for circular polarizations -- 8.3 Binary phase nonlinear metasurfaces -- 8.3.1 Continuous control of nonlinearity phase -- 8.4 Nonlinear metasurface holography -- 8.5 Nonlinear metasurface for intensity control and image encoding -- 8.6 Vortex beam generation in harmonic generation -- 8.7 Nonlinear imaging -- 8.8 Nonlinear planar chiral metasurfaces -- 8.9 Summary and outlook -- References -- 9. Optical nanoantennas for enhanced THz emission | Andrei Gorodetsky, Sergey Lepeshov, Alex Krasnok and Pavel Belov -- 9.1 Introduction -- 9.2 Principles of THz photoconductive antennas and photomixers -- 9.2.1 Methods of coherent THz generation -- 9.2.2 Pulsed THz generation in photoconductive antennas -- 9.2.3 Pulsed THz detection in photoconductive antennas -- 9.2.4 Continuous wave THz generation in photomixers | ||
500 | |a 9.2.5 Effect of the contact electrodes shape on the radiative characteristics of THz photoconductive antennas and photomixers -- 9.2.6 How plasmonic optical nanoantennas can enhance THz generation and detection -- 9.3 Design of optical plasmonic nanoantennas -- 9.4 Results of plasmonic nanoantennas implementation for THz generation enhancement -- 9.4.1 Interdigitated electrodes -- 9.4.2 Plasmon monopole nanoantennas -- 9.4.3 Plasmon dipole nanoantennas -- 9.4.4 2D plasmonic gratings -- 9.4.5 3D plasmonic gratings -- 9.4.6 Comparison of the reviewed approaches -- 9.5 Enhancement of THz detection with nanoantennas -- 9.6 Outlook -- References -- 10. Active photonics based on phase-change materials and reconfigurable nanowire systems | Lei Kang, Liu Liu, Sarah J. Boehm, Lan Lin, Theresa S. Mayer, Christine D. Keating and Douglas H. Werner -- 10.1 Introduction -- 10.2 Phase transition enabled tunable metadevices -- 10.2.1 An electrically actuated VO2-hybrid metadevice -- 10.2.2 Conclusions and future studies -- 10.3 Nanoparticle assembly-based metadevices -- 10.3.1 Reconfigurable IR-polarizer based on nanowire assemblies -- 10.3.2 Conclusions and future studies -- References -- 11. Dancing angels on the point of a needle: nanofabrication for subwavelength optics | Mikhail Y. Shalaginov, Fan Yang, Juejun Hu and Tian Gu -- 11.1 Opening remarks -- 11.2 Standard planar nanofabrication technologies applied to subwavelength optics -- 11.2.1 Materials for subwavelength optics -- 11.2.2 Large-scale manufacturing: a case study of optical metasurfaces -- 11.3 Innovative solutions to nonconventional subwavelength optics designs -- 11.3.1 HAR nanostructures -- 11.3.2 3D structures -- 11.3.3 Fabrication on unconventional substrates -- 11.4 Summary and outlook -- References -- Index | ||
700 | 1 | |a Werner, Douglas H. |d 1960- |e Sonstige |0 (DE-588)139479767 |4 oth | |
700 | 1 | |a Campbell, Sawyer D. |4 edt | |
700 | 1 | |a Kang, Lei |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-78561-837-6 |
912 | |a ZDB-30-PQE |a ZDB-100-IET | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032424938 | ||
966 | e | |u https://doi.org/10.1049/SBEW540E |l UBY01 |p ZDB-100-IET |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1049/SBEW540E |l UER01 |p ZDB-100-IET |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181979300626432 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Campbell, Sawyer D. Kang, Lei |
author2_role | edt edt |
author2_variant | s d c sd sdc l k lk |
author_GND | (DE-588)139479767 |
author_facet | Campbell, Sawyer D. Kang, Lei |
building | Verbundindex |
bvnumber | BV047017404 |
collection | ZDB-30-PQE ZDB-100-IET |
ctrlnum | (ZDB-30-PQE)EBC6341979 (OCoLC)1224010634 (DE-599)BVBBV047017404 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08838nmm a2200409zc 4500</leader><controlfield tag="001">BV047017404</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210723 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201119s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781785618383</subfield><subfield code="c">pdf</subfield><subfield code="9">978-1-78561-838-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/SBEW540E</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6341979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224010634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047017404</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanoantennas and Plasmonics</subfield><subfield code="b">Modelling, design and fabrication</subfield><subfield code="c">edited by Douglas H. Werner, Sawyer D. Campbell & Lei Kang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stevenage</subfield><subfield code="b">Institution of Engineering & Technology, IET</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (471 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">ACES Series on Computational andNumerical Modelling in Electrical Engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Intro -- Contents -- About the editors -- Preface -- 1. Optical properties of plasmonic nanoloop antennas | Jogender Nagar, Ryan J. Chaky, Arnold F. McKinley, Mario F. Pantoja and Douglas H. Werner -- 1.1 Analytical theory of impedance-loaded nanoloops -- 1.1.1 Material characteristics -- 1.1.2 The closed thin-wire loop -- 1.1.3 The loaded loop -- 1.1.4 Radiation from a driven thin-wire loop antenna -- 1.1.5 The sub-wavelength resonance of loops and rings -- 1.2 Analytical theory of mutual coupling in nanoloops -- 1.2.1 Theory -- 1.2.2 Results -- 1.3 Broadband superdirective radiation modes in nanoloops -- 1.4 Trade-offs in electrical size, directivity, and gain for nanoloops -- 1.4.1 Optimizing a single nanoloop -- 1.4.2 Optimizing arrays of nanoloops -- 1.5 Elliptical nanoloops -- 1.5.1 Special cases -- 1.5.2 The electrically small elliptical loop antenna -- 1.6 Summary -- References -- 2. Passive and active nano cylinders for enhanced and directive radiation and scattering phenomena | Samel Arslanagic and Richard W. Ziolkowski -- 2.1 Introduction and chapter overview -- 2.2 Configurations, materials, gain model, and analysis methods -- 2.2.1 Configurations -- 2.2.2 Materials -- 2.2.3 Gain model -- 2.2.4 Analysis methods -- 2.3 Symmetric and asymmetric CNPs -- 2.3.1 Dipole-based symmetric 2D CNPs -- 2.3.2 Why go for something else? Asymmetric, holey and cake, active 2D CNPs -- 2.3.3 Eccentric three-region CNPs -- 2.4 Symmetric and asymmetric active 3D CNPs -- 2.4.1 Symmetric active 3D CNPs -- 2.4.2 Asymmetric, holey and cake, active 3D CNPs -- 2.5 Symmetric multi-layer NPs -- 2.6 Conclusions and summary -- References -- 3. Coherent control of light scattering | Alex Krasnok and Andrea Alu -- 3.1 Poles and zeros of the bS matrix -- 3.2 Coherent perfect absorption -- 3.3 Virtual perfect absorption</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.4 Coherently enhanced wireless power transfer -- 3.5 Conclusions -- References -- 4. Time domain modeling with the generalized dispersive material model | Ludmila J. Prokopeva, William D. Henshaw, Donald W. Schwendeman and Alexander V. Kildishev -- 4.1 GDM model -- 4.1.1 Maxwell's equations -- 4.1.2 The GDM model -- 4.1.3 The dispersion relation for the GDM model -- 4.1.4 Special GDM cases: classical dispersion models -- 4.1.5 GDM fits -- 4.2 Numerical implementation of the GDM model -- 4.2.1 Yee-based ADE GDM scheme -- 4.2.2 Yee-based recursive convolution GDM scheme -- 4.2.3 Yee-based universal GDM scheme -- 4.3 Numerical results -- 4.4 Conclusions -- References -- 5. Inverse-design of plasmonic and dielectric optical nanoantennas | Sawyer. D. Campbell, Eric B. Whiting, Danny Z. Zhu and Douglas H. Werner -- 5.1 Introduction -- 5.2 Optimization methods for plasmonic and dielectric optical nanoantennas -- 5.2.1 Local optimization algorithms -- 5.2.2 Global optimization algorithms -- 5.2.3 Multi-objective optimization algorithms -- 5.2.4 Applied nanoantenna and meta-device optimization -- 5.3 Optimized plasmonic nanoantennas for large field enhancement -- 5.4 Nanoantenna optimization for phase-gradient metasurface applications -- 5.4.1 Two-dimensional dielectric nanoantennas -- 5.4.2 Three-dimensional metallodielectric nanoantennas -- 5.5 Conclusions -- Acknowledgments -- References -- 6. Multi-level carrier kinetics models for computational nanophotonics | Shaimaa I. Azzam and Alexander V. Kildishev -- 6.1 Gain media models -- 6.2 Saturable absorbing media -- 6.2.1 Saturable absorption models with MRE -- 6.2.2 Modeling reverse saturable absorption with MRE -- 6.3 Multiphoton absorption models -- References -- 7. Nonlinear multipolar interference: from nonreciprocal directionality to one-way nonlinear mirror | Ekaterina Poutrina and Augustine Urbas</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.1 Introduction -- 7.2 Single-element scattering response: An overview -- 7.2.1 Expressions for the scattered field -- 7.2.2 Linear multipolar interference -- 7.2.3 Nonlinear multipolar interference -- 7.3 Retrieval of the effective nonlinear multipolar polarizabilities -- 7.3.1 Retrieval of multipolar partial waves -- 7.3.2 Retrieval of nonlinear magnetoelectric polarizabilities -- 7.4 Single-element scattering response: implementation with physical geometry -- 7.4.1 Linear multipolar polarizabilities of a dimer structure -- 7.4.2 Nonlinear magnetoelectric polarizabilities of a dimer structure -- 7.5 Nonlinear scattering off a magnetoelectric metasurface -- 7.5.1 Nonlinear mirror via difference frequency generation -- 7.5.2 One-way nonlinear mirror via multipolar interference in nonlinearly generated field -- 7.6 Concluding remarks -- References -- 8. Plasmonic metasurfaces for controlling harmonic generations | Shumei Chen, Guixin Li, Thomas Zentgraf and Shuang Zhang -- 8.1 Introduction -- 8.2 Selection rule in harmonic generations for circular polarizations -- 8.3 Binary phase nonlinear metasurfaces -- 8.3.1 Continuous control of nonlinearity phase -- 8.4 Nonlinear metasurface holography -- 8.5 Nonlinear metasurface for intensity control and image encoding -- 8.6 Vortex beam generation in harmonic generation -- 8.7 Nonlinear imaging -- 8.8 Nonlinear planar chiral metasurfaces -- 8.9 Summary and outlook -- References -- 9. Optical nanoantennas for enhanced THz emission | Andrei Gorodetsky, Sergey Lepeshov, Alex Krasnok and Pavel Belov -- 9.1 Introduction -- 9.2 Principles of THz photoconductive antennas and photomixers -- 9.2.1 Methods of coherent THz generation -- 9.2.2 Pulsed THz generation in photoconductive antennas -- 9.2.3 Pulsed THz detection in photoconductive antennas -- 9.2.4 Continuous wave THz generation in photomixers</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.2.5 Effect of the contact electrodes shape on the radiative characteristics of THz photoconductive antennas and photomixers -- 9.2.6 How plasmonic optical nanoantennas can enhance THz generation and detection -- 9.3 Design of optical plasmonic nanoantennas -- 9.4 Results of plasmonic nanoantennas implementation for THz generation enhancement -- 9.4.1 Interdigitated electrodes -- 9.4.2 Plasmon monopole nanoantennas -- 9.4.3 Plasmon dipole nanoantennas -- 9.4.4 2D plasmonic gratings -- 9.4.5 3D plasmonic gratings -- 9.4.6 Comparison of the reviewed approaches -- 9.5 Enhancement of THz detection with nanoantennas -- 9.6 Outlook -- References -- 10. Active photonics based on phase-change materials and reconfigurable nanowire systems | Lei Kang, Liu Liu, Sarah J. Boehm, Lan Lin, Theresa S. Mayer, Christine D. Keating and Douglas H. Werner -- 10.1 Introduction -- 10.2 Phase transition enabled tunable metadevices -- 10.2.1 An electrically actuated VO2-hybrid metadevice -- 10.2.2 Conclusions and future studies -- 10.3 Nanoparticle assembly-based metadevices -- 10.3.1 Reconfigurable IR-polarizer based on nanowire assemblies -- 10.3.2 Conclusions and future studies -- References -- 11. Dancing angels on the point of a needle: nanofabrication for subwavelength optics | Mikhail Y. Shalaginov, Fan Yang, Juejun Hu and Tian Gu -- 11.1 Opening remarks -- 11.2 Standard planar nanofabrication technologies applied to subwavelength optics -- 11.2.1 Materials for subwavelength optics -- 11.2.2 Large-scale manufacturing: a case study of optical metasurfaces -- 11.3 Innovative solutions to nonconventional subwavelength optics designs -- 11.3.1 HAR nanostructures -- 11.3.2 3D structures -- 11.3.3 Fabrication on unconventional substrates -- 11.4 Summary and outlook -- References -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Werner, Douglas H.</subfield><subfield code="d">1960-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)139479767</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Campbell, Sawyer D.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Lei</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-78561-837-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-100-IET</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032424938</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/SBEW540E</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/SBEW540E</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047017404 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:58:22Z |
indexdate | 2024-07-10T09:00:15Z |
institution | BVB |
isbn | 9781785618383 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032424938 |
oclc_num | 1224010634 |
open_access_boolean | |
owner | DE-29 DE-706 |
owner_facet | DE-29 DE-706 |
physical | 1 Online-Ressource (471 Seiten) |
psigel | ZDB-30-PQE ZDB-100-IET |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Institution of Engineering & Technology, IET |
record_format | marc |
series2 | ACES Series on Computational andNumerical Modelling in Electrical Engineering |
spelling | Nanoantennas and Plasmonics Modelling, design and fabrication edited by Douglas H. Werner, Sawyer D. Campbell & Lei Kang Stevenage Institution of Engineering & Technology, IET [2020] 1 Online-Ressource (471 Seiten) txt rdacontent c rdamedia cr rdacarrier ACES Series on Computational andNumerical Modelling in Electrical Engineering Intro -- Contents -- About the editors -- Preface -- 1. Optical properties of plasmonic nanoloop antennas | Jogender Nagar, Ryan J. Chaky, Arnold F. McKinley, Mario F. Pantoja and Douglas H. Werner -- 1.1 Analytical theory of impedance-loaded nanoloops -- 1.1.1 Material characteristics -- 1.1.2 The closed thin-wire loop -- 1.1.3 The loaded loop -- 1.1.4 Radiation from a driven thin-wire loop antenna -- 1.1.5 The sub-wavelength resonance of loops and rings -- 1.2 Analytical theory of mutual coupling in nanoloops -- 1.2.1 Theory -- 1.2.2 Results -- 1.3 Broadband superdirective radiation modes in nanoloops -- 1.4 Trade-offs in electrical size, directivity, and gain for nanoloops -- 1.4.1 Optimizing a single nanoloop -- 1.4.2 Optimizing arrays of nanoloops -- 1.5 Elliptical nanoloops -- 1.5.1 Special cases -- 1.5.2 The electrically small elliptical loop antenna -- 1.6 Summary -- References -- 2. Passive and active nano cylinders for enhanced and directive radiation and scattering phenomena | Samel Arslanagic and Richard W. Ziolkowski -- 2.1 Introduction and chapter overview -- 2.2 Configurations, materials, gain model, and analysis methods -- 2.2.1 Configurations -- 2.2.2 Materials -- 2.2.3 Gain model -- 2.2.4 Analysis methods -- 2.3 Symmetric and asymmetric CNPs -- 2.3.1 Dipole-based symmetric 2D CNPs -- 2.3.2 Why go for something else? Asymmetric, holey and cake, active 2D CNPs -- 2.3.3 Eccentric three-region CNPs -- 2.4 Symmetric and asymmetric active 3D CNPs -- 2.4.1 Symmetric active 3D CNPs -- 2.4.2 Asymmetric, holey and cake, active 3D CNPs -- 2.5 Symmetric multi-layer NPs -- 2.6 Conclusions and summary -- References -- 3. Coherent control of light scattering | Alex Krasnok and Andrea Alu -- 3.1 Poles and zeros of the bS matrix -- 3.2 Coherent perfect absorption -- 3.3 Virtual perfect absorption 3.4 Coherently enhanced wireless power transfer -- 3.5 Conclusions -- References -- 4. Time domain modeling with the generalized dispersive material model | Ludmila J. Prokopeva, William D. Henshaw, Donald W. Schwendeman and Alexander V. Kildishev -- 4.1 GDM model -- 4.1.1 Maxwell's equations -- 4.1.2 The GDM model -- 4.1.3 The dispersion relation for the GDM model -- 4.1.4 Special GDM cases: classical dispersion models -- 4.1.5 GDM fits -- 4.2 Numerical implementation of the GDM model -- 4.2.1 Yee-based ADE GDM scheme -- 4.2.2 Yee-based recursive convolution GDM scheme -- 4.2.3 Yee-based universal GDM scheme -- 4.3 Numerical results -- 4.4 Conclusions -- References -- 5. Inverse-design of plasmonic and dielectric optical nanoantennas | Sawyer. D. Campbell, Eric B. Whiting, Danny Z. Zhu and Douglas H. Werner -- 5.1 Introduction -- 5.2 Optimization methods for plasmonic and dielectric optical nanoantennas -- 5.2.1 Local optimization algorithms -- 5.2.2 Global optimization algorithms -- 5.2.3 Multi-objective optimization algorithms -- 5.2.4 Applied nanoantenna and meta-device optimization -- 5.3 Optimized plasmonic nanoantennas for large field enhancement -- 5.4 Nanoantenna optimization for phase-gradient metasurface applications -- 5.4.1 Two-dimensional dielectric nanoantennas -- 5.4.2 Three-dimensional metallodielectric nanoantennas -- 5.5 Conclusions -- Acknowledgments -- References -- 6. Multi-level carrier kinetics models for computational nanophotonics | Shaimaa I. Azzam and Alexander V. Kildishev -- 6.1 Gain media models -- 6.2 Saturable absorbing media -- 6.2.1 Saturable absorption models with MRE -- 6.2.2 Modeling reverse saturable absorption with MRE -- 6.3 Multiphoton absorption models -- References -- 7. Nonlinear multipolar interference: from nonreciprocal directionality to one-way nonlinear mirror | Ekaterina Poutrina and Augustine Urbas 7.1 Introduction -- 7.2 Single-element scattering response: An overview -- 7.2.1 Expressions for the scattered field -- 7.2.2 Linear multipolar interference -- 7.2.3 Nonlinear multipolar interference -- 7.3 Retrieval of the effective nonlinear multipolar polarizabilities -- 7.3.1 Retrieval of multipolar partial waves -- 7.3.2 Retrieval of nonlinear magnetoelectric polarizabilities -- 7.4 Single-element scattering response: implementation with physical geometry -- 7.4.1 Linear multipolar polarizabilities of a dimer structure -- 7.4.2 Nonlinear magnetoelectric polarizabilities of a dimer structure -- 7.5 Nonlinear scattering off a magnetoelectric metasurface -- 7.5.1 Nonlinear mirror via difference frequency generation -- 7.5.2 One-way nonlinear mirror via multipolar interference in nonlinearly generated field -- 7.6 Concluding remarks -- References -- 8. Plasmonic metasurfaces for controlling harmonic generations | Shumei Chen, Guixin Li, Thomas Zentgraf and Shuang Zhang -- 8.1 Introduction -- 8.2 Selection rule in harmonic generations for circular polarizations -- 8.3 Binary phase nonlinear metasurfaces -- 8.3.1 Continuous control of nonlinearity phase -- 8.4 Nonlinear metasurface holography -- 8.5 Nonlinear metasurface for intensity control and image encoding -- 8.6 Vortex beam generation in harmonic generation -- 8.7 Nonlinear imaging -- 8.8 Nonlinear planar chiral metasurfaces -- 8.9 Summary and outlook -- References -- 9. Optical nanoantennas for enhanced THz emission | Andrei Gorodetsky, Sergey Lepeshov, Alex Krasnok and Pavel Belov -- 9.1 Introduction -- 9.2 Principles of THz photoconductive antennas and photomixers -- 9.2.1 Methods of coherent THz generation -- 9.2.2 Pulsed THz generation in photoconductive antennas -- 9.2.3 Pulsed THz detection in photoconductive antennas -- 9.2.4 Continuous wave THz generation in photomixers 9.2.5 Effect of the contact electrodes shape on the radiative characteristics of THz photoconductive antennas and photomixers -- 9.2.6 How plasmonic optical nanoantennas can enhance THz generation and detection -- 9.3 Design of optical plasmonic nanoantennas -- 9.4 Results of plasmonic nanoantennas implementation for THz generation enhancement -- 9.4.1 Interdigitated electrodes -- 9.4.2 Plasmon monopole nanoantennas -- 9.4.3 Plasmon dipole nanoantennas -- 9.4.4 2D plasmonic gratings -- 9.4.5 3D plasmonic gratings -- 9.4.6 Comparison of the reviewed approaches -- 9.5 Enhancement of THz detection with nanoantennas -- 9.6 Outlook -- References -- 10. Active photonics based on phase-change materials and reconfigurable nanowire systems | Lei Kang, Liu Liu, Sarah J. Boehm, Lan Lin, Theresa S. Mayer, Christine D. Keating and Douglas H. Werner -- 10.1 Introduction -- 10.2 Phase transition enabled tunable metadevices -- 10.2.1 An electrically actuated VO2-hybrid metadevice -- 10.2.2 Conclusions and future studies -- 10.3 Nanoparticle assembly-based metadevices -- 10.3.1 Reconfigurable IR-polarizer based on nanowire assemblies -- 10.3.2 Conclusions and future studies -- References -- 11. Dancing angels on the point of a needle: nanofabrication for subwavelength optics | Mikhail Y. Shalaginov, Fan Yang, Juejun Hu and Tian Gu -- 11.1 Opening remarks -- 11.2 Standard planar nanofabrication technologies applied to subwavelength optics -- 11.2.1 Materials for subwavelength optics -- 11.2.2 Large-scale manufacturing: a case study of optical metasurfaces -- 11.3 Innovative solutions to nonconventional subwavelength optics designs -- 11.3.1 HAR nanostructures -- 11.3.2 3D structures -- 11.3.3 Fabrication on unconventional substrates -- 11.4 Summary and outlook -- References -- Index Werner, Douglas H. 1960- Sonstige (DE-588)139479767 oth Campbell, Sawyer D. edt Kang, Lei edt Erscheint auch als Druck-Ausgabe 978-1-78561-837-6 |
spellingShingle | Nanoantennas and Plasmonics Modelling, design and fabrication |
title | Nanoantennas and Plasmonics Modelling, design and fabrication |
title_auth | Nanoantennas and Plasmonics Modelling, design and fabrication |
title_exact_search | Nanoantennas and Plasmonics Modelling, design and fabrication |
title_exact_search_txtP | Nanoantennas and Plasmonics Modelling, design and fabrication |
title_full | Nanoantennas and Plasmonics Modelling, design and fabrication edited by Douglas H. Werner, Sawyer D. Campbell & Lei Kang |
title_fullStr | Nanoantennas and Plasmonics Modelling, design and fabrication edited by Douglas H. Werner, Sawyer D. Campbell & Lei Kang |
title_full_unstemmed | Nanoantennas and Plasmonics Modelling, design and fabrication edited by Douglas H. Werner, Sawyer D. Campbell & Lei Kang |
title_short | Nanoantennas and Plasmonics |
title_sort | nanoantennas and plasmonics modelling design and fabrication |
title_sub | Modelling, design and fabrication |
work_keys_str_mv | AT wernerdouglash nanoantennasandplasmonicsmodellingdesignandfabrication AT campbellsawyerd nanoantennasandplasmonicsmodellingdesignandfabrication AT kanglei nanoantennasandplasmonicsmodellingdesignandfabrication |