Green synthesis of nanomaterials for bioenergy applications:
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ, USA ; Chichester, West Sussex, UK
Wiley Blackwell
2021
|
Online-Zugang: | TUM01 |
Beschreibung: | Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Acknowledgements -- About the Editors -- Chapter 1 Nanocatalysts and Biofuels: Applications and Future Challenges -- 1.1 Introduction -- 1.2 Biofuels Production -- 1.3 Role of Catalysts in Biomass Conversion -- 1.4 Application of Nanocatalysts -- 1.4.1 Biomass Pretreatment -- 1.4.2 Biochemical Conversion Route -- 1.4.3 Thermochemical Conversion Methods -- 1.4.4 Biodiesel -- 1.4.5 Future Challenges -- 1.5 Conclusion -- References -- Chapter 2 Nanomaterials: Types, Synthesis, and Characterization -- 2.1 Introduction -- 2.2 Nanomaterials in Different Formats -- 2.2.1 Dimensionality-Confined Nanomaterials -- 2.2.2 Inorganic, Organic, and Hybrid Nanomaterials -- 2.3 Nanomaterials Synthesis -- 2.3.1 Top-Down Methods -- 2.3.2 Bottom-Up Methods -- 2.4 Nanomaterial Characterization -- 2.4.1 Fourier Transform Infrared Spectrometer -- 2.4.2 Raman Scattering Spectroscopy -- 2.4.3 Ultraviolet-Visible Spectroscopy -- 2.4.4 X-Ray Diffraction -- 2.4.5 X-Ray Fluorescence -- 2.4.6 X-Ray Photoelectron Spectroscopy -- 2.4.7 Energy Dispersive X-Ray Spectroscopy -- 2.4.8 Nuclear Magnetic Resonance Spectroscopy -- 2.4.9 Scanning Electron Microscopy -- 2.4.10 Field Emission Scanning Electron Microscopy -- 2.4.11 Environmental Scanning Electron Microscopy -- 2.4.12 Transmission Electron Microscopy -- 2.4.13 High-Resolution Transmission Electron Microscopy -- 2.4.14 Atomic Force Microscopy -- 2.4.15 Vibrating Sample Magnetometer -- 2.4.16 Superconducting Quantum Interference Device -- 2.4.17 Magnetic Force Microscopy -- 2.4.18 Differential Scanning Calorimetry -- 2.4.19 Thermogravimetric Analysis -- 2.4.20 Brunauer-Emmett-Teller Physisorption Method -- 2.4.21 Dynamic Light Scattering -- 2.4.22 Zeta-Potential -- 2.5 Conclusion -- References Chapter 3 Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials -- 3.1 Introduction -- 3.2 Classification and Types of Nanomaterials -- 3.2.1 Classification of Nanomaterials Based on Materials -- 3.2.2 Classification of Nanomaterials on the Basis of Dimension -- 3.3 Properties of Nanomaterials -- 3.3.1 Physical Properties -- 3.4 Synthesis of Nanomaterials -- 3.4.1 Bottom-Up Method -- 3.4.2 Top-Down Method -- 3.5 Characterization of Nanomaterials -- 3.5.1 Size -- 3.5.2 Surface Area -- 3.5.3 Composition -- 3.5.4 Surface Morphology -- 3.5.5 Surface Charge -- 3.5.6 Crystallography -- 3.5.7 Concentrations -- 3.6 Conclusion -- References -- Chapter 4 Synthesis of Metallic and Metal Oxide Nanomaterials -- 4.1 Nanomaterials -- 4.2 Biogenic Methods for Synthesis of Biocompatible and Hydrophilic Nanomaterials -- 4.2.1 Biological Resources-Directed Plasmonic Nanoparticles -- 4.2.2 Plant Extract-Directed Metal Oxides -- 4.2.3 Metallic Hybrid Nanoparticles -- 4.2.4 Magnetic Nanoparticles in Biofuel Production -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Analysis of Green Methods to Synthesize Nanomaterials -- 5.1 Introduction -- 5.2 Classification of Nanomaterials -- 5.3 Natural Sources for Green Nanomaterials -- 5.4 Green Methods to Synthesize Nanomaterials -- 5.5 Conclusion -- References -- Chapter 6 Biosynthesis of Silver Nanoparticles from Acacia nilotica (L.) Wild. Ex. Delile Leaf Extract -- 6.1 Introduction -- Plant Information -- 6.2 Materials and Methods -- 6.2.1 Collection of Plant Material -- 6.2.2 Preparation of Leaves Extract of Acacia nilotica -- 6.3 Green Synthesis of Silver Nanoparticles from Acacia nilotica Leaf Powder -- 6.3.1 Preparation of Plant Materials -- 6.3.2 Green Synthesis of Silver Nanoparticles -- 6.4 Characterization of Silver Nanoparticles -- 6.4.1 UV-VIS Spectroscopy 6.4.2 Fouriter Transform Infrared Spectroscopy -- 6.4.3 Energy Dispersive X-Ray Spectroscopy -- 6.4.4 Scanning Electron Microscope -- 6.4.5 Transmission Electron Microscopy -- 6.5 Result and Discussion -- 6.5.1 Yield of Extract in Different Organic Solvents -- 6.5.2 Color Change of the Solutions -- 6.5.3 UV-VIS Spectral Analysis -- 6.5.4 FT-IR Spectroscopy Analysis -- 6.5.5 Energy Dispersive X-Ray Spectroscopy -- 6.5.6 Scanning Electron Microscopy -- 6.5.7 Transmission Electron Microscope -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Nanomaterials for Enzyme Immobilization -- 7.1 Enzymes -- 7.1.1 Enzyme Classification -- 7.1.2 Enzyme Sources and Their Application Fields -- 7.1.3 Economic Importance of the Industrial Enzymes -- 7.1.4 Advancements in Enzyme Engineering -- 7.1.5 Global Enzyme Demand -- 7.2 Conventional Enzyme Immobilization Methods -- 7.2.1 Physical Methods -- 7.2.2 Chemical Methods -- 7.3 New Generation Immobilization Methods -- 7.3.1 Enzyme Incorporated Hybrid Nanoflowers -- 7.3.2 Non-Enzyme Incorporated HNFs and Their Enzyme Mimic Activity -- 7.4 Conclusion -- Acknowledgment -- References -- Chapter 8 Nanomaterial Biosynthesis and Enzyme Immobilization: Methods and Applications -- 8.1 Introduction -- 8.2 Types of Nanomaterials -- 8.3 Size and Forms of Nanomaterials -- 8.4 Properties of Nanomaterials -- 8.5 Methods for Nanomaterial Biosynthesis -- 8.5.1 Mechanical Grinding -- 8.5.2 Thermolysis, Photolysis, and Sonolysis -- 8.5.3 Top-Down Approach -- 8.5.4 Bottom-Up Approach -- 8.5.5 Sol-Gel Process -- 8.5.6 High-Temperature Nanomaterial Biosynthesis -- 8.5.7 Flame-Assisted Ultrasonic Spray Pyrolysis -- 8.6 Applications of Nanoparticles -- 8.7 Nanomaterials-Immobilized Enzymes toward Biofuel and Bioenergy Production -- 8.8 Immobilization -- 8.9 Matrix for Immobilization -- 8.9.1 Natural Polymers 8.9.2 Synthetic Polymers -- 8.9.3 Inorganic Support -- 8.10 Methods of Enzyme Immobilization -- 8.10.1 Adsorption -- 8.10.2 Covalent Binding -- 8.10.3 Copolymerization (Crosslinking) -- 8.10.4 Entrapment and Encapsulation -- 8.11 Merits of Immobilization -- 8.12 Immobilization of Enzymes Beneficial for Biofuel Production -- 8.13 Conclusion -- References -- Chapter 9 Carbon Nanotubes for Hydrogen Purification and Storage -- 9.1 Production and Structure of Carbon Nanotubes -- 9.1.1 Introduction to Carbon Nanomaterials and Their Synthesis -- 9.1.2 Structure of the CNTs -- 9.1.3 CNT Production: Arc Discharge and Laser Ablation -- 9.1.4 Chemical Vapor Deposition -- 9.2 H2 Separation Using Carbon Nanotubes -- 9.2.1 Introduction to H2 Separation -- 9.2.2 Carbon Membranes Production -- 9.2.3 Hydrogen Separation Using CNT-Based Membranes -- 9.3 Carbon Nanotubes for Hydrogen Storage -- 9.3.1 Introduction to Hydrogen Storage -- 9.3.2 H2 Storage in SWCNTs -- 9.3.3 Hydrogen Storage in Multiwall Nanotubes -- 9.3.4 Some More Insights on the Spillover Mechanism -- 9.3.5 Are Nanomaterials Really Necessary for H2 Storage? -- 9.3.6 CNTs' Influence on Hydrogen Storage Performance of Hydrides -- 9.4 Conclusion -- Acknowledgments -- References -- Index -- EULA. |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9781119576792 9781119576808 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047017361 | ||
003 | DE-604 | ||
005 | 20230728 | ||
007 | cr|uuu---uuuuu | ||
008 | 201119s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781119576792 |c EPUB |9 978-1-119-57679-2 | ||
020 | |a 9781119576808 |c PDF |9 978-1-119-57680-8 | ||
035 | |a (ZDB-30-PQE)EBC6321337 | ||
035 | |a (OCoLC)1224016318 | ||
035 | |a (DE-599)BVBBV047017361 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a CIT 975 |2 stub | ||
084 | |a ERG 780 |2 stub | ||
245 | 1 | 0 | |a Green synthesis of nanomaterials for bioenergy applications |c edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta |
264 | 1 | |a Hoboken, NJ, USA ; Chichester, West Sussex, UK |b Wiley Blackwell |c 2021 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Acknowledgements -- About the Editors -- Chapter 1 Nanocatalysts and Biofuels: Applications and Future Challenges -- 1.1 Introduction -- 1.2 Biofuels Production -- 1.3 Role of Catalysts in Biomass Conversion -- 1.4 Application of Nanocatalysts -- 1.4.1 Biomass Pretreatment -- 1.4.2 Biochemical Conversion Route -- 1.4.3 Thermochemical Conversion Methods -- 1.4.4 Biodiesel -- 1.4.5 Future Challenges -- 1.5 Conclusion -- References -- Chapter 2 Nanomaterials: Types, Synthesis, and Characterization -- 2.1 Introduction -- 2.2 Nanomaterials in Different Formats -- 2.2.1 Dimensionality-Confined Nanomaterials -- 2.2.2 Inorganic, Organic, and Hybrid Nanomaterials -- 2.3 Nanomaterials Synthesis -- 2.3.1 Top-Down Methods -- 2.3.2 Bottom-Up Methods -- 2.4 Nanomaterial Characterization -- 2.4.1 Fourier Transform Infrared Spectrometer -- 2.4.2 Raman Scattering Spectroscopy -- 2.4.3 Ultraviolet-Visible Spectroscopy -- 2.4.4 X-Ray Diffraction -- 2.4.5 X-Ray Fluorescence -- 2.4.6 X-Ray Photoelectron Spectroscopy -- 2.4.7 Energy Dispersive X-Ray Spectroscopy -- 2.4.8 Nuclear Magnetic Resonance Spectroscopy -- 2.4.9 Scanning Electron Microscopy -- 2.4.10 Field Emission Scanning Electron Microscopy -- 2.4.11 Environmental Scanning Electron Microscopy -- 2.4.12 Transmission Electron Microscopy -- 2.4.13 High-Resolution Transmission Electron Microscopy -- 2.4.14 Atomic Force Microscopy -- 2.4.15 Vibrating Sample Magnetometer -- 2.4.16 Superconducting Quantum Interference Device -- 2.4.17 Magnetic Force Microscopy -- 2.4.18 Differential Scanning Calorimetry -- 2.4.19 Thermogravimetric Analysis -- 2.4.20 Brunauer-Emmett-Teller Physisorption Method -- 2.4.21 Dynamic Light Scattering -- 2.4.22 Zeta-Potential -- 2.5 Conclusion -- References | ||
500 | |a Chapter 3 Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials -- 3.1 Introduction -- 3.2 Classification and Types of Nanomaterials -- 3.2.1 Classification of Nanomaterials Based on Materials -- 3.2.2 Classification of Nanomaterials on the Basis of Dimension -- 3.3 Properties of Nanomaterials -- 3.3.1 Physical Properties -- 3.4 Synthesis of Nanomaterials -- 3.4.1 Bottom-Up Method -- 3.4.2 Top-Down Method -- 3.5 Characterization of Nanomaterials -- 3.5.1 Size -- 3.5.2 Surface Area -- 3.5.3 Composition -- 3.5.4 Surface Morphology -- 3.5.5 Surface Charge -- 3.5.6 Crystallography -- 3.5.7 Concentrations -- 3.6 Conclusion -- References -- Chapter 4 Synthesis of Metallic and Metal Oxide Nanomaterials -- 4.1 Nanomaterials -- 4.2 Biogenic Methods for Synthesis of Biocompatible and Hydrophilic Nanomaterials -- 4.2.1 Biological Resources-Directed Plasmonic Nanoparticles -- 4.2.2 Plant Extract-Directed Metal Oxides -- 4.2.3 Metallic Hybrid Nanoparticles -- 4.2.4 Magnetic Nanoparticles in Biofuel Production -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Analysis of Green Methods to Synthesize Nanomaterials -- 5.1 Introduction -- 5.2 Classification of Nanomaterials -- 5.3 Natural Sources for Green Nanomaterials -- 5.4 Green Methods to Synthesize Nanomaterials -- 5.5 Conclusion -- References -- Chapter 6 Biosynthesis of Silver Nanoparticles from Acacia nilotica (L.) Wild. Ex. Delile Leaf Extract -- 6.1 Introduction -- Plant Information -- 6.2 Materials and Methods -- 6.2.1 Collection of Plant Material -- 6.2.2 Preparation of Leaves Extract of Acacia nilotica -- 6.3 Green Synthesis of Silver Nanoparticles from Acacia nilotica Leaf Powder -- 6.3.1 Preparation of Plant Materials -- 6.3.2 Green Synthesis of Silver Nanoparticles -- 6.4 Characterization of Silver Nanoparticles -- 6.4.1 UV-VIS Spectroscopy | ||
500 | |a 6.4.2 Fouriter Transform Infrared Spectroscopy -- 6.4.3 Energy Dispersive X-Ray Spectroscopy -- 6.4.4 Scanning Electron Microscope -- 6.4.5 Transmission Electron Microscopy -- 6.5 Result and Discussion -- 6.5.1 Yield of Extract in Different Organic Solvents -- 6.5.2 Color Change of the Solutions -- 6.5.3 UV-VIS Spectral Analysis -- 6.5.4 FT-IR Spectroscopy Analysis -- 6.5.5 Energy Dispersive X-Ray Spectroscopy -- 6.5.6 Scanning Electron Microscopy -- 6.5.7 Transmission Electron Microscope -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Nanomaterials for Enzyme Immobilization -- 7.1 Enzymes -- 7.1.1 Enzyme Classification -- 7.1.2 Enzyme Sources and Their Application Fields -- 7.1.3 Economic Importance of the Industrial Enzymes -- 7.1.4 Advancements in Enzyme Engineering -- 7.1.5 Global Enzyme Demand -- 7.2 Conventional Enzyme Immobilization Methods -- 7.2.1 Physical Methods -- 7.2.2 Chemical Methods -- 7.3 New Generation Immobilization Methods -- 7.3.1 Enzyme Incorporated Hybrid Nanoflowers -- 7.3.2 Non-Enzyme Incorporated HNFs and Their Enzyme Mimic Activity -- 7.4 Conclusion -- Acknowledgment -- References -- Chapter 8 Nanomaterial Biosynthesis and Enzyme Immobilization: Methods and Applications -- 8.1 Introduction -- 8.2 Types of Nanomaterials -- 8.3 Size and Forms of Nanomaterials -- 8.4 Properties of Nanomaterials -- 8.5 Methods for Nanomaterial Biosynthesis -- 8.5.1 Mechanical Grinding -- 8.5.2 Thermolysis, Photolysis, and Sonolysis -- 8.5.3 Top-Down Approach -- 8.5.4 Bottom-Up Approach -- 8.5.5 Sol-Gel Process -- 8.5.6 High-Temperature Nanomaterial Biosynthesis -- 8.5.7 Flame-Assisted Ultrasonic Spray Pyrolysis -- 8.6 Applications of Nanoparticles -- 8.7 Nanomaterials-Immobilized Enzymes toward Biofuel and Bioenergy Production -- 8.8 Immobilization -- 8.9 Matrix for Immobilization -- 8.9.1 Natural Polymers | ||
500 | |a 8.9.2 Synthetic Polymers -- 8.9.3 Inorganic Support -- 8.10 Methods of Enzyme Immobilization -- 8.10.1 Adsorption -- 8.10.2 Covalent Binding -- 8.10.3 Copolymerization (Crosslinking) -- 8.10.4 Entrapment and Encapsulation -- 8.11 Merits of Immobilization -- 8.12 Immobilization of Enzymes Beneficial for Biofuel Production -- 8.13 Conclusion -- References -- Chapter 9 Carbon Nanotubes for Hydrogen Purification and Storage -- 9.1 Production and Structure of Carbon Nanotubes -- 9.1.1 Introduction to Carbon Nanomaterials and Their Synthesis -- 9.1.2 Structure of the CNTs -- 9.1.3 CNT Production: Arc Discharge and Laser Ablation -- 9.1.4 Chemical Vapor Deposition -- 9.2 H2 Separation Using Carbon Nanotubes -- 9.2.1 Introduction to H2 Separation -- 9.2.2 Carbon Membranes Production -- 9.2.3 Hydrogen Separation Using CNT-Based Membranes -- 9.3 Carbon Nanotubes for Hydrogen Storage -- 9.3.1 Introduction to Hydrogen Storage -- 9.3.2 H2 Storage in SWCNTs -- 9.3.3 Hydrogen Storage in Multiwall Nanotubes -- 9.3.4 Some More Insights on the Spillover Mechanism -- 9.3.5 Are Nanomaterials Really Necessary for H2 Storage? -- 9.3.6 CNTs' Influence on Hydrogen Storage Performance of Hydrides -- 9.4 Conclusion -- Acknowledgments -- References -- Index -- EULA. | ||
700 | 1 | |a Srivastava, Neha |d 1981- |0 (DE-588)1241678464 |4 edt | |
700 | 1 | |a Srivastava, Manish |d 1973- |0 (DE-588)1146543204 |4 edt | |
700 | 1 | |a Mishra, P. K. |4 edt | |
700 | 1 | |a Gupta, Vijai Kumar |d 1981- |0 (DE-588)1034239767 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-119-57681-5 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032424896 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6321337 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181979240857600 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Srivastava, Neha 1981- Srivastava, Manish 1973- Mishra, P. K. Gupta, Vijai Kumar 1981- |
author2_role | edt edt edt edt |
author2_variant | n s ns m s ms p k m pk pkm v k g vk vkg |
author_GND | (DE-588)1241678464 (DE-588)1146543204 (DE-588)1034239767 |
author_facet | Srivastava, Neha 1981- Srivastava, Manish 1973- Mishra, P. K. Gupta, Vijai Kumar 1981- |
building | Verbundindex |
bvnumber | BV047017361 |
classification_tum | CIT 975 ERG 780 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC6321337 (OCoLC)1224016318 (DE-599)BVBBV047017361 |
discipline | Energietechnik, Energiewirtschaft Chemie-Ingenieurwesen Biotechnologie |
discipline_str_mv | Energietechnik, Energiewirtschaft Chemie-Ingenieurwesen Biotechnologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08442nmm a2200421zc 4500</leader><controlfield tag="001">BV047017361</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230728 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201119s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119576792</subfield><subfield code="c">EPUB</subfield><subfield code="9">978-1-119-57679-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119576808</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-119-57680-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6321337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224016318</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047017361</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 975</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 780</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green synthesis of nanomaterials for bioenergy applications</subfield><subfield code="c">edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ, USA ; Chichester, West Sussex, UK</subfield><subfield code="b">Wiley Blackwell</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Acknowledgements -- About the Editors -- Chapter 1 Nanocatalysts and Biofuels: Applications and Future Challenges -- 1.1 Introduction -- 1.2 Biofuels Production -- 1.3 Role of Catalysts in Biomass Conversion -- 1.4 Application of Nanocatalysts -- 1.4.1 Biomass Pretreatment -- 1.4.2 Biochemical Conversion Route -- 1.4.3 Thermochemical Conversion Methods -- 1.4.4 Biodiesel -- 1.4.5 Future Challenges -- 1.5 Conclusion -- References -- Chapter 2 Nanomaterials: Types, Synthesis, and Characterization -- 2.1 Introduction -- 2.2 Nanomaterials in Different Formats -- 2.2.1 Dimensionality-Confined Nanomaterials -- 2.2.2 Inorganic, Organic, and Hybrid Nanomaterials -- 2.3 Nanomaterials Synthesis -- 2.3.1 Top-Down Methods -- 2.3.2 Bottom-Up Methods -- 2.4 Nanomaterial Characterization -- 2.4.1 Fourier Transform Infrared Spectrometer -- 2.4.2 Raman Scattering Spectroscopy -- 2.4.3 Ultraviolet-Visible Spectroscopy -- 2.4.4 X-Ray Diffraction -- 2.4.5 X-Ray Fluorescence -- 2.4.6 X-Ray Photoelectron Spectroscopy -- 2.4.7 Energy Dispersive X-Ray Spectroscopy -- 2.4.8 Nuclear Magnetic Resonance Spectroscopy -- 2.4.9 Scanning Electron Microscopy -- 2.4.10 Field Emission Scanning Electron Microscopy -- 2.4.11 Environmental Scanning Electron Microscopy -- 2.4.12 Transmission Electron Microscopy -- 2.4.13 High-Resolution Transmission Electron Microscopy -- 2.4.14 Atomic Force Microscopy -- 2.4.15 Vibrating Sample Magnetometer -- 2.4.16 Superconducting Quantum Interference Device -- 2.4.17 Magnetic Force Microscopy -- 2.4.18 Differential Scanning Calorimetry -- 2.4.19 Thermogravimetric Analysis -- 2.4.20 Brunauer-Emmett-Teller Physisorption Method -- 2.4.21 Dynamic Light Scattering -- 2.4.22 Zeta-Potential -- 2.5 Conclusion -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 3 Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials -- 3.1 Introduction -- 3.2 Classification and Types of Nanomaterials -- 3.2.1 Classification of Nanomaterials Based on Materials -- 3.2.2 Classification of Nanomaterials on the Basis of Dimension -- 3.3 Properties of Nanomaterials -- 3.3.1 Physical Properties -- 3.4 Synthesis of Nanomaterials -- 3.4.1 Bottom-Up Method -- 3.4.2 Top-Down Method -- 3.5 Characterization of Nanomaterials -- 3.5.1 Size -- 3.5.2 Surface Area -- 3.5.3 Composition -- 3.5.4 Surface Morphology -- 3.5.5 Surface Charge -- 3.5.6 Crystallography -- 3.5.7 Concentrations -- 3.6 Conclusion -- References -- Chapter 4 Synthesis of Metallic and Metal Oxide Nanomaterials -- 4.1 Nanomaterials -- 4.2 Biogenic Methods for Synthesis of Biocompatible and Hydrophilic Nanomaterials -- 4.2.1 Biological Resources-Directed Plasmonic Nanoparticles -- 4.2.2 Plant Extract-Directed Metal Oxides -- 4.2.3 Metallic Hybrid Nanoparticles -- 4.2.4 Magnetic Nanoparticles in Biofuel Production -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Analysis of Green Methods to Synthesize Nanomaterials -- 5.1 Introduction -- 5.2 Classification of Nanomaterials -- 5.3 Natural Sources for Green Nanomaterials -- 5.4 Green Methods to Synthesize Nanomaterials -- 5.5 Conclusion -- References -- Chapter 6 Biosynthesis of Silver Nanoparticles from Acacia nilotica (L.) Wild. Ex. Delile Leaf Extract -- 6.1 Introduction -- Plant Information -- 6.2 Materials and Methods -- 6.2.1 Collection of Plant Material -- 6.2.2 Preparation of Leaves Extract of Acacia nilotica -- 6.3 Green Synthesis of Silver Nanoparticles from Acacia nilotica Leaf Powder -- 6.3.1 Preparation of Plant Materials -- 6.3.2 Green Synthesis of Silver Nanoparticles -- 6.4 Characterization of Silver Nanoparticles -- 6.4.1 UV-VIS Spectroscopy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6.4.2 Fouriter Transform Infrared Spectroscopy -- 6.4.3 Energy Dispersive X-Ray Spectroscopy -- 6.4.4 Scanning Electron Microscope -- 6.4.5 Transmission Electron Microscopy -- 6.5 Result and Discussion -- 6.5.1 Yield of Extract in Different Organic Solvents -- 6.5.2 Color Change of the Solutions -- 6.5.3 UV-VIS Spectral Analysis -- 6.5.4 FT-IR Spectroscopy Analysis -- 6.5.5 Energy Dispersive X-Ray Spectroscopy -- 6.5.6 Scanning Electron Microscopy -- 6.5.7 Transmission Electron Microscope -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Nanomaterials for Enzyme Immobilization -- 7.1 Enzymes -- 7.1.1 Enzyme Classification -- 7.1.2 Enzyme Sources and Their Application Fields -- 7.1.3 Economic Importance of the Industrial Enzymes -- 7.1.4 Advancements in Enzyme Engineering -- 7.1.5 Global Enzyme Demand -- 7.2 Conventional Enzyme Immobilization Methods -- 7.2.1 Physical Methods -- 7.2.2 Chemical Methods -- 7.3 New Generation Immobilization Methods -- 7.3.1 Enzyme Incorporated Hybrid Nanoflowers -- 7.3.2 Non-Enzyme Incorporated HNFs and Their Enzyme Mimic Activity -- 7.4 Conclusion -- Acknowledgment -- References -- Chapter 8 Nanomaterial Biosynthesis and Enzyme Immobilization: Methods and Applications -- 8.1 Introduction -- 8.2 Types of Nanomaterials -- 8.3 Size and Forms of Nanomaterials -- 8.4 Properties of Nanomaterials -- 8.5 Methods for Nanomaterial Biosynthesis -- 8.5.1 Mechanical Grinding -- 8.5.2 Thermolysis, Photolysis, and Sonolysis -- 8.5.3 Top-Down Approach -- 8.5.4 Bottom-Up Approach -- 8.5.5 Sol-Gel Process -- 8.5.6 High-Temperature Nanomaterial Biosynthesis -- 8.5.7 Flame-Assisted Ultrasonic Spray Pyrolysis -- 8.6 Applications of Nanoparticles -- 8.7 Nanomaterials-Immobilized Enzymes toward Biofuel and Bioenergy Production -- 8.8 Immobilization -- 8.9 Matrix for Immobilization -- 8.9.1 Natural Polymers</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8.9.2 Synthetic Polymers -- 8.9.3 Inorganic Support -- 8.10 Methods of Enzyme Immobilization -- 8.10.1 Adsorption -- 8.10.2 Covalent Binding -- 8.10.3 Copolymerization (Crosslinking) -- 8.10.4 Entrapment and Encapsulation -- 8.11 Merits of Immobilization -- 8.12 Immobilization of Enzymes Beneficial for Biofuel Production -- 8.13 Conclusion -- References -- Chapter 9 Carbon Nanotubes for Hydrogen Purification and Storage -- 9.1 Production and Structure of Carbon Nanotubes -- 9.1.1 Introduction to Carbon Nanomaterials and Their Synthesis -- 9.1.2 Structure of the CNTs -- 9.1.3 CNT Production: Arc Discharge and Laser Ablation -- 9.1.4 Chemical Vapor Deposition -- 9.2 H2 Separation Using Carbon Nanotubes -- 9.2.1 Introduction to H2 Separation -- 9.2.2 Carbon Membranes Production -- 9.2.3 Hydrogen Separation Using CNT-Based Membranes -- 9.3 Carbon Nanotubes for Hydrogen Storage -- 9.3.1 Introduction to Hydrogen Storage -- 9.3.2 H2 Storage in SWCNTs -- 9.3.3 Hydrogen Storage in Multiwall Nanotubes -- 9.3.4 Some More Insights on the Spillover Mechanism -- 9.3.5 Are Nanomaterials Really Necessary for H2 Storage? -- 9.3.6 CNTs' Influence on Hydrogen Storage Performance of Hydrides -- 9.4 Conclusion -- Acknowledgments -- References -- Index -- EULA.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Srivastava, Neha</subfield><subfield code="d">1981-</subfield><subfield code="0">(DE-588)1241678464</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Srivastava, Manish</subfield><subfield code="d">1973-</subfield><subfield code="0">(DE-588)1146543204</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mishra, P. K.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gupta, Vijai Kumar</subfield><subfield code="d">1981-</subfield><subfield code="0">(DE-588)1034239767</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-119-57681-5</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032424896</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6321337</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047017361 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:58:22Z |
indexdate | 2024-07-10T09:00:15Z |
institution | BVB |
isbn | 9781119576792 9781119576808 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032424896 |
oclc_num | 1224016318 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley Blackwell |
record_format | marc |
spelling | Green synthesis of nanomaterials for bioenergy applications edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta Hoboken, NJ, USA ; Chichester, West Sussex, UK Wiley Blackwell 2021 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Acknowledgements -- About the Editors -- Chapter 1 Nanocatalysts and Biofuels: Applications and Future Challenges -- 1.1 Introduction -- 1.2 Biofuels Production -- 1.3 Role of Catalysts in Biomass Conversion -- 1.4 Application of Nanocatalysts -- 1.4.1 Biomass Pretreatment -- 1.4.2 Biochemical Conversion Route -- 1.4.3 Thermochemical Conversion Methods -- 1.4.4 Biodiesel -- 1.4.5 Future Challenges -- 1.5 Conclusion -- References -- Chapter 2 Nanomaterials: Types, Synthesis, and Characterization -- 2.1 Introduction -- 2.2 Nanomaterials in Different Formats -- 2.2.1 Dimensionality-Confined Nanomaterials -- 2.2.2 Inorganic, Organic, and Hybrid Nanomaterials -- 2.3 Nanomaterials Synthesis -- 2.3.1 Top-Down Methods -- 2.3.2 Bottom-Up Methods -- 2.4 Nanomaterial Characterization -- 2.4.1 Fourier Transform Infrared Spectrometer -- 2.4.2 Raman Scattering Spectroscopy -- 2.4.3 Ultraviolet-Visible Spectroscopy -- 2.4.4 X-Ray Diffraction -- 2.4.5 X-Ray Fluorescence -- 2.4.6 X-Ray Photoelectron Spectroscopy -- 2.4.7 Energy Dispersive X-Ray Spectroscopy -- 2.4.8 Nuclear Magnetic Resonance Spectroscopy -- 2.4.9 Scanning Electron Microscopy -- 2.4.10 Field Emission Scanning Electron Microscopy -- 2.4.11 Environmental Scanning Electron Microscopy -- 2.4.12 Transmission Electron Microscopy -- 2.4.13 High-Resolution Transmission Electron Microscopy -- 2.4.14 Atomic Force Microscopy -- 2.4.15 Vibrating Sample Magnetometer -- 2.4.16 Superconducting Quantum Interference Device -- 2.4.17 Magnetic Force Microscopy -- 2.4.18 Differential Scanning Calorimetry -- 2.4.19 Thermogravimetric Analysis -- 2.4.20 Brunauer-Emmett-Teller Physisorption Method -- 2.4.21 Dynamic Light Scattering -- 2.4.22 Zeta-Potential -- 2.5 Conclusion -- References Chapter 3 Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials -- 3.1 Introduction -- 3.2 Classification and Types of Nanomaterials -- 3.2.1 Classification of Nanomaterials Based on Materials -- 3.2.2 Classification of Nanomaterials on the Basis of Dimension -- 3.3 Properties of Nanomaterials -- 3.3.1 Physical Properties -- 3.4 Synthesis of Nanomaterials -- 3.4.1 Bottom-Up Method -- 3.4.2 Top-Down Method -- 3.5 Characterization of Nanomaterials -- 3.5.1 Size -- 3.5.2 Surface Area -- 3.5.3 Composition -- 3.5.4 Surface Morphology -- 3.5.5 Surface Charge -- 3.5.6 Crystallography -- 3.5.7 Concentrations -- 3.6 Conclusion -- References -- Chapter 4 Synthesis of Metallic and Metal Oxide Nanomaterials -- 4.1 Nanomaterials -- 4.2 Biogenic Methods for Synthesis of Biocompatible and Hydrophilic Nanomaterials -- 4.2.1 Biological Resources-Directed Plasmonic Nanoparticles -- 4.2.2 Plant Extract-Directed Metal Oxides -- 4.2.3 Metallic Hybrid Nanoparticles -- 4.2.4 Magnetic Nanoparticles in Biofuel Production -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Analysis of Green Methods to Synthesize Nanomaterials -- 5.1 Introduction -- 5.2 Classification of Nanomaterials -- 5.3 Natural Sources for Green Nanomaterials -- 5.4 Green Methods to Synthesize Nanomaterials -- 5.5 Conclusion -- References -- Chapter 6 Biosynthesis of Silver Nanoparticles from Acacia nilotica (L.) Wild. Ex. Delile Leaf Extract -- 6.1 Introduction -- Plant Information -- 6.2 Materials and Methods -- 6.2.1 Collection of Plant Material -- 6.2.2 Preparation of Leaves Extract of Acacia nilotica -- 6.3 Green Synthesis of Silver Nanoparticles from Acacia nilotica Leaf Powder -- 6.3.1 Preparation of Plant Materials -- 6.3.2 Green Synthesis of Silver Nanoparticles -- 6.4 Characterization of Silver Nanoparticles -- 6.4.1 UV-VIS Spectroscopy 6.4.2 Fouriter Transform Infrared Spectroscopy -- 6.4.3 Energy Dispersive X-Ray Spectroscopy -- 6.4.4 Scanning Electron Microscope -- 6.4.5 Transmission Electron Microscopy -- 6.5 Result and Discussion -- 6.5.1 Yield of Extract in Different Organic Solvents -- 6.5.2 Color Change of the Solutions -- 6.5.3 UV-VIS Spectral Analysis -- 6.5.4 FT-IR Spectroscopy Analysis -- 6.5.5 Energy Dispersive X-Ray Spectroscopy -- 6.5.6 Scanning Electron Microscopy -- 6.5.7 Transmission Electron Microscope -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Nanomaterials for Enzyme Immobilization -- 7.1 Enzymes -- 7.1.1 Enzyme Classification -- 7.1.2 Enzyme Sources and Their Application Fields -- 7.1.3 Economic Importance of the Industrial Enzymes -- 7.1.4 Advancements in Enzyme Engineering -- 7.1.5 Global Enzyme Demand -- 7.2 Conventional Enzyme Immobilization Methods -- 7.2.1 Physical Methods -- 7.2.2 Chemical Methods -- 7.3 New Generation Immobilization Methods -- 7.3.1 Enzyme Incorporated Hybrid Nanoflowers -- 7.3.2 Non-Enzyme Incorporated HNFs and Their Enzyme Mimic Activity -- 7.4 Conclusion -- Acknowledgment -- References -- Chapter 8 Nanomaterial Biosynthesis and Enzyme Immobilization: Methods and Applications -- 8.1 Introduction -- 8.2 Types of Nanomaterials -- 8.3 Size and Forms of Nanomaterials -- 8.4 Properties of Nanomaterials -- 8.5 Methods for Nanomaterial Biosynthesis -- 8.5.1 Mechanical Grinding -- 8.5.2 Thermolysis, Photolysis, and Sonolysis -- 8.5.3 Top-Down Approach -- 8.5.4 Bottom-Up Approach -- 8.5.5 Sol-Gel Process -- 8.5.6 High-Temperature Nanomaterial Biosynthesis -- 8.5.7 Flame-Assisted Ultrasonic Spray Pyrolysis -- 8.6 Applications of Nanoparticles -- 8.7 Nanomaterials-Immobilized Enzymes toward Biofuel and Bioenergy Production -- 8.8 Immobilization -- 8.9 Matrix for Immobilization -- 8.9.1 Natural Polymers 8.9.2 Synthetic Polymers -- 8.9.3 Inorganic Support -- 8.10 Methods of Enzyme Immobilization -- 8.10.1 Adsorption -- 8.10.2 Covalent Binding -- 8.10.3 Copolymerization (Crosslinking) -- 8.10.4 Entrapment and Encapsulation -- 8.11 Merits of Immobilization -- 8.12 Immobilization of Enzymes Beneficial for Biofuel Production -- 8.13 Conclusion -- References -- Chapter 9 Carbon Nanotubes for Hydrogen Purification and Storage -- 9.1 Production and Structure of Carbon Nanotubes -- 9.1.1 Introduction to Carbon Nanomaterials and Their Synthesis -- 9.1.2 Structure of the CNTs -- 9.1.3 CNT Production: Arc Discharge and Laser Ablation -- 9.1.4 Chemical Vapor Deposition -- 9.2 H2 Separation Using Carbon Nanotubes -- 9.2.1 Introduction to H2 Separation -- 9.2.2 Carbon Membranes Production -- 9.2.3 Hydrogen Separation Using CNT-Based Membranes -- 9.3 Carbon Nanotubes for Hydrogen Storage -- 9.3.1 Introduction to Hydrogen Storage -- 9.3.2 H2 Storage in SWCNTs -- 9.3.3 Hydrogen Storage in Multiwall Nanotubes -- 9.3.4 Some More Insights on the Spillover Mechanism -- 9.3.5 Are Nanomaterials Really Necessary for H2 Storage? -- 9.3.6 CNTs' Influence on Hydrogen Storage Performance of Hydrides -- 9.4 Conclusion -- Acknowledgments -- References -- Index -- EULA. Srivastava, Neha 1981- (DE-588)1241678464 edt Srivastava, Manish 1973- (DE-588)1146543204 edt Mishra, P. K. edt Gupta, Vijai Kumar 1981- (DE-588)1034239767 edt Erscheint auch als Druck-Ausgabe, Hardcover 978-1-119-57681-5 |
spellingShingle | Green synthesis of nanomaterials for bioenergy applications |
title | Green synthesis of nanomaterials for bioenergy applications |
title_auth | Green synthesis of nanomaterials for bioenergy applications |
title_exact_search | Green synthesis of nanomaterials for bioenergy applications |
title_exact_search_txtP | Green synthesis of nanomaterials for bioenergy applications |
title_full | Green synthesis of nanomaterials for bioenergy applications edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta |
title_fullStr | Green synthesis of nanomaterials for bioenergy applications edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta |
title_full_unstemmed | Green synthesis of nanomaterials for bioenergy applications edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta |
title_short | Green synthesis of nanomaterials for bioenergy applications |
title_sort | green synthesis of nanomaterials for bioenergy applications |
work_keys_str_mv | AT srivastavaneha greensynthesisofnanomaterialsforbioenergyapplications AT srivastavamanish greensynthesisofnanomaterialsforbioenergyapplications AT mishrapk greensynthesisofnanomaterialsforbioenergyapplications AT guptavijaikumar greensynthesisofnanomaterialsforbioenergyapplications |