Green synthesis of nanomaterials for bioenergy applications:
Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Srivastava, Neha 1981- (HerausgeberIn), Srivastava, Manish 1973- (HerausgeberIn), Mishra, P. K. (HerausgeberIn), Gupta, Vijai Kumar 1981- (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hoboken, NJ, USA ; Chichester, West Sussex, UK Wiley Blackwell 2021
Online-Zugang:TUM01
Beschreibung:Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Acknowledgements -- About the Editors -- Chapter 1 Nanocatalysts and Biofuels: Applications and Future Challenges -- 1.1 Introduction -- 1.2 Biofuels Production -- 1.3 Role of Catalysts in Biomass Conversion -- 1.4 Application of Nanocatalysts -- 1.4.1 Biomass Pretreatment -- 1.4.2 Biochemical Conversion Route -- 1.4.3 Thermochemical Conversion Methods -- 1.4.4 Biodiesel -- 1.4.5 Future Challenges -- 1.5 Conclusion -- References -- Chapter 2 Nanomaterials: Types, Synthesis, and Characterization -- 2.1 Introduction -- 2.2 Nanomaterials in Different Formats -- 2.2.1 Dimensionality-Confined Nanomaterials -- 2.2.2 Inorganic, Organic, and Hybrid Nanomaterials -- 2.3 Nanomaterials Synthesis -- 2.3.1 Top-Down Methods -- 2.3.2 Bottom-Up Methods -- 2.4 Nanomaterial Characterization -- 2.4.1 Fourier Transform Infrared Spectrometer -- 2.4.2 Raman Scattering Spectroscopy -- 2.4.3 Ultraviolet-Visible Spectroscopy -- 2.4.4 X-Ray Diffraction -- 2.4.5 X-Ray Fluorescence -- 2.4.6 X-Ray Photoelectron Spectroscopy -- 2.4.7 Energy Dispersive X-Ray Spectroscopy -- 2.4.8 Nuclear Magnetic Resonance Spectroscopy -- 2.4.9 Scanning Electron Microscopy -- 2.4.10 Field Emission Scanning Electron Microscopy -- 2.4.11 Environmental Scanning Electron Microscopy -- 2.4.12 Transmission Electron Microscopy -- 2.4.13 High-Resolution Transmission Electron Microscopy -- 2.4.14 Atomic Force Microscopy -- 2.4.15 Vibrating Sample Magnetometer -- 2.4.16 Superconducting Quantum Interference Device -- 2.4.17 Magnetic Force Microscopy -- 2.4.18 Differential Scanning Calorimetry -- 2.4.19 Thermogravimetric Analysis -- 2.4.20 Brunauer-Emmett-Teller Physisorption Method -- 2.4.21 Dynamic Light Scattering -- 2.4.22 Zeta-Potential -- 2.5 Conclusion -- References
Chapter 3 Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials -- 3.1 Introduction -- 3.2 Classification and Types of Nanomaterials -- 3.2.1 Classification of Nanomaterials Based on Materials -- 3.2.2 Classification of Nanomaterials on the Basis of Dimension -- 3.3 Properties of Nanomaterials -- 3.3.1 Physical Properties -- 3.4 Synthesis of Nanomaterials -- 3.4.1 Bottom-Up Method -- 3.4.2 Top-Down Method -- 3.5 Characterization of Nanomaterials -- 3.5.1 Size -- 3.5.2 Surface Area -- 3.5.3 Composition -- 3.5.4 Surface Morphology -- 3.5.5 Surface Charge -- 3.5.6 Crystallography -- 3.5.7 Concentrations -- 3.6 Conclusion -- References -- Chapter 4 Synthesis of Metallic and Metal Oxide Nanomaterials -- 4.1 Nanomaterials -- 4.2 Biogenic Methods for Synthesis of Biocompatible and Hydrophilic Nanomaterials -- 4.2.1 Biological Resources-Directed Plasmonic Nanoparticles -- 4.2.2 Plant Extract-Directed Metal Oxides -- 4.2.3 Metallic Hybrid Nanoparticles -- 4.2.4 Magnetic Nanoparticles in Biofuel Production -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Analysis of Green Methods to Synthesize Nanomaterials -- 5.1 Introduction -- 5.2 Classification of Nanomaterials -- 5.3 Natural Sources for Green Nanomaterials -- 5.4 Green Methods to Synthesize Nanomaterials -- 5.5 Conclusion -- References -- Chapter 6 Biosynthesis of Silver Nanoparticles from Acacia nilotica (L.) Wild. Ex. Delile Leaf Extract -- 6.1 Introduction -- Plant Information -- 6.2 Materials and Methods -- 6.2.1 Collection of Plant Material -- 6.2.2 Preparation of Leaves Extract of Acacia nilotica -- 6.3 Green Synthesis of Silver Nanoparticles from Acacia nilotica Leaf Powder -- 6.3.1 Preparation of Plant Materials -- 6.3.2 Green Synthesis of Silver Nanoparticles -- 6.4 Characterization of Silver Nanoparticles -- 6.4.1 UV-VIS Spectroscopy
6.4.2 Fouriter Transform Infrared Spectroscopy -- 6.4.3 Energy Dispersive X-Ray Spectroscopy -- 6.4.4 Scanning Electron Microscope -- 6.4.5 Transmission Electron Microscopy -- 6.5 Result and Discussion -- 6.5.1 Yield of Extract in Different Organic Solvents -- 6.5.2 Color Change of the Solutions -- 6.5.3 UV-VIS Spectral Analysis -- 6.5.4 FT-IR Spectroscopy Analysis -- 6.5.5 Energy Dispersive X-Ray Spectroscopy -- 6.5.6 Scanning Electron Microscopy -- 6.5.7 Transmission Electron Microscope -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Nanomaterials for Enzyme Immobilization -- 7.1 Enzymes -- 7.1.1 Enzyme Classification -- 7.1.2 Enzyme Sources and Their Application Fields -- 7.1.3 Economic Importance of the Industrial Enzymes -- 7.1.4 Advancements in Enzyme Engineering -- 7.1.5 Global Enzyme Demand -- 7.2 Conventional Enzyme Immobilization Methods -- 7.2.1 Physical Methods -- 7.2.2 Chemical Methods -- 7.3 New Generation Immobilization Methods -- 7.3.1 Enzyme Incorporated Hybrid Nanoflowers -- 7.3.2 Non-Enzyme Incorporated HNFs and Their Enzyme Mimic Activity -- 7.4 Conclusion -- Acknowledgment -- References -- Chapter 8 Nanomaterial Biosynthesis and Enzyme Immobilization: Methods and Applications -- 8.1 Introduction -- 8.2 Types of Nanomaterials -- 8.3 Size and Forms of Nanomaterials -- 8.4 Properties of Nanomaterials -- 8.5 Methods for Nanomaterial Biosynthesis -- 8.5.1 Mechanical Grinding -- 8.5.2 Thermolysis, Photolysis, and Sonolysis -- 8.5.3 Top-Down Approach -- 8.5.4 Bottom-Up Approach -- 8.5.5 Sol-Gel Process -- 8.5.6 High-Temperature Nanomaterial Biosynthesis -- 8.5.7 Flame-Assisted Ultrasonic Spray Pyrolysis -- 8.6 Applications of Nanoparticles -- 8.7 Nanomaterials-Immobilized Enzymes toward Biofuel and Bioenergy Production -- 8.8 Immobilization -- 8.9 Matrix for Immobilization -- 8.9.1 Natural Polymers
8.9.2 Synthetic Polymers -- 8.9.3 Inorganic Support -- 8.10 Methods of Enzyme Immobilization -- 8.10.1 Adsorption -- 8.10.2 Covalent Binding -- 8.10.3 Copolymerization (Crosslinking) -- 8.10.4 Entrapment and Encapsulation -- 8.11 Merits of Immobilization -- 8.12 Immobilization of Enzymes Beneficial for Biofuel Production -- 8.13 Conclusion -- References -- Chapter 9 Carbon Nanotubes for Hydrogen Purification and Storage -- 9.1 Production and Structure of Carbon Nanotubes -- 9.1.1 Introduction to Carbon Nanomaterials and Their Synthesis -- 9.1.2 Structure of the CNTs -- 9.1.3 CNT Production: Arc Discharge and Laser Ablation -- 9.1.4 Chemical Vapor Deposition -- 9.2 H2 Separation Using Carbon Nanotubes -- 9.2.1 Introduction to H2 Separation -- 9.2.2 Carbon Membranes Production -- 9.2.3 Hydrogen Separation Using CNT-Based Membranes -- 9.3 Carbon Nanotubes for Hydrogen Storage -- 9.3.1 Introduction to Hydrogen Storage -- 9.3.2 H2 Storage in SWCNTs -- 9.3.3 Hydrogen Storage in Multiwall Nanotubes -- 9.3.4 Some More Insights on the Spillover Mechanism -- 9.3.5 Are Nanomaterials Really Necessary for H2 Storage? -- 9.3.6 CNTs' Influence on Hydrogen Storage Performance of Hydrides -- 9.4 Conclusion -- Acknowledgments -- References -- Index -- EULA.
Beschreibung:1 Online-Ressource Illustrationen, Diagramme
ISBN:9781119576792
9781119576808

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!