Process systems engineering for biofuels development:
Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Bonilla-Petriciolet, Adrián (HerausgeberIn), Rangaiah, Gade Pandu (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hoboken, NJ, USA ; Chichester, West Sussex, UK Wiley 2020
Schriftenreihe:Wiley series in renewable resource
Online-Zugang:TUM01
Beschreibung:Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Introduction -- 1.1 Importance of Biofuels and Overview of their Production -- 1.2 Significance of Process Systems Engineering for Biofuels Production -- 1.2.1 Modeling of Physicochemical Properties of Thermodynamic Systems Related to Biofuels -- 1.2.2 Intensification of the Biomass Transformation Routes for the Production of Biofuels -- 1.2.3 Computer‐Aided Methodologies for Process Modeling, Design, Optimization, and Control Including Supply Chain and Life Cycle Analyses -- 1.3 Overview of this Book -- References -- Chapter 2 Waste Biomass Suitable as Feedstock for Biofuels Production -- 2.1 Introduction -- 2.1.1 The Need for Biofuels -- 2.1.2 Problem Definition -- 2.1.3 The Biomass Pool -- 2.2 Kinds of Feedstock -- 2.2.1 Spent Coffee Grounds -- 2.2.2 Lignocellulose Biomass -- 2.2.3 Palm, Olive, Coconut, Avocado, and Argan Oil Production Residues -- 2.2.4 Citrus -- 2.2.5 Grape Marc -- 2.2.6 Waste Oil and Cooking Oil -- 2.2.7 Additional Sources -- 2.3 Conclusions -- Acknowledgment -- References -- Chapter 3 Multiscale Analysis for the Exploitation of Bioresources: From Reactor Design to Supply Chain Analysis -- 3.1 Introduction -- 3.2 Unit Level -- 3.2.1 Short Cut Methods -- 3.2.2 Mechanistic Models -- 3.2.3 Rules of Thumb -- 3.2.4 Dimensionless Analysis -- 3.2.5 Surrogate Models -- 3.2.6 Experimental Correlations -- 3.3 Process Synthesis -- 3.3.1 Heuristic Based -- 3.3.2 Supestructure Optimization -- 3.3.3 Environmental Impact Metrics -- 3.3.4 Safety Considerations -- 3.4 The Product Design Problem -- 3.4.1 Product Design: Engineering Biomass -- 3.4.2 Blending Problems -- 3.5 Supply Chain Level -- 3.5.1 Introduction -- 3.5.2 Modeling Issues -- 3.6 Multiscale Links and Considerations -- Acknowledgment -- Nomenclature -- References
Chapter 4 Challenges in the Modeling of Thermodynamic Properties and Phase Equilibrium Calculations for Biofuels Process Design -- 4.1 Introduction -- 4.2 Thermodynamic Modeling Framework: Elements, Structure, and Organization -- 4.3 Thermodynamics of Biofuel Systems -- 4.3.1 Phase Equilibria -- 4.3.2 Thermodynamic Models -- 4.4 Sources of Data for Biofuels Process Design -- 4.5 Methods for Predicting Data for Biofuels Process Design -- 4.5.1 Group Contribution Methods for Biofuels Process Design -- 4.5.2 Quantitative Structure-Property Relationships for Biofuels Process Design -- 4.6 Challenges for the Biofuels Process Design Methods -- 4.7 Influence of Uncertainties in Thermophysical Properties of Pure Compounds on the Phase Behavior of Biofuel Systems -- 4.8 Conclusions -- Acknowledgment -- Exercises -- References -- Chapter 5 Up‐grading of Waste Oil: A Key Step in the Future of Biofuel Production -- 5.1 Introduction -- 5.2 Physicochemical Pretreatments of Waste Oils: Removal of Contaminants -- 5.3 Direct Treatment and Conversion of FFAs into Methyl Esters -- 5.3.1 Homogeneous Catalysis: Brønsted and Lewis Acids -- 5.3.2 Heterogeneous Catalysis -- 5.3.3 Enzymatic Biodiesel Production -- 5.3.4 ILs Biodiesel Production -- 5.3.5 Use of Metal Hydrated Salts -- 5.4 Future Trends of the Pretreatments of Waste Oils -- 5.5 Conclusions -- Acknowledgment -- Abbreviations -- References -- Chapter 6 Production of Biojet Fuel from Waste Raw Materials: A Review -- 6.1 Introduction -- 6.2 Waste Triglyceride Feedstock -- 6.3 Waste Lignocellulosic Feedstock -- 6.4 Waste Sugar and Starchy Feedstock -- 6.5 Main Challenges and Future Trends -- 6.6 Conclusions -- Acknowledgments -- References -- Chapter 7 Computer‐Aided Design for Genetic Modulation to Improve Biofuel Production -- 7.1 Introduction -- 7.2 Method -- 7.2.1 Flux Balance Analysis
7.2.2 Flux Variability Analysis -- 7.2.3 Minimization of Metabolic Adjustment -- 7.2.4 Regulatory On‐Off Minimization -- 7.2.5 Optimal Strain Design Problem -- 7.3 Computer‐Aided Strain Design Tool -- 7.4 Examples -- 7.4.1 E. coli Core Model -- 7.4.2 Genome‐Scale Metabolic Model of E. coli iAF1260 -- 7.5 Conclusions -- Appendix 7.A The SBP Program -- References -- Chapter 8 Implementation of Biodiesel Production Process Using Enzyme‐Catalyzed Routes -- 8.1 Introduction -- 8.2 Biodiesel Production Routes: Chemical versus Enzymatic Catalysts -- 8.2.1 Chemical Catalysts -- 8.2.2 Enzymatic Catalysts -- 8.3 Optimal Reaction Conditions and Kinetic Modeling -- 8.3.1 Evaluation of the Reaction Conditions -- 8.3.2 Kinetic Modeling -- 8.4 Process Simulation and Economic Evaluation -- 8.5 Reuse of Enzyme for the Transesterification Reaction -- 8.5.1 Recovery of Eversa Transform by Means of Centrifugation -- 8.5.2 Recovery of Eversa Transform by Means of Ceramic Membranes -- 8.6 Environmental Impact and Final Remarks -- Acknowledgments -- Nomenclature -- References -- Chapter 9 Process Analysis of Biodiesel Production - Kinetic Modeling, Simulation, and Process Design -- 9.1 Introduction -- 9.1.1 Homogeneous‐Based Reactions -- 9.1.2 Heterogeneous‐Based Reactions -- 9.1.3 Enzyme‐Catalyzed Reactions -- 9.1.4 Supercritical Route Reactions -- 9.1.5 Methanol or Ethanol for Biodiesel Synthesis -- 9.2 Getting Started with Aspen Plus V10 -- 9.2.1 Pure Compounds -- 9.2.2 Mixture Parameters -- 9.3 Kinetic Study -- 9.3.1 Esterification Reaction -- 9.3.2 Experimental Reaction Data Regression -- 9.3.3 Transesterification Reaction -- 9.3.4 Supercritical Route -- 9.4 Process Design -- 9.4.1 Esterification Reaction -- 9.4.2 Methanol Recycling -- 9.4.3 Transesterification Reaction -- 9.4.4 Biodiesel Purification -- 9.4.5 Additional Resources -- 9.5 Energy and Economic Analysis
9.6 Concluding Remarks -- Acknowledgment -- Exercises -- References -- Chapter 10 Process Development, Design and Analysis of Microalgal Biodiesel Production Aided by Microwave and Ultrasonication -- 10.1 Introduction -- 10.2 Process Development and Modeling -- 10.3 Sizing and Cost Analysis -- 10.4 Comparison with the WCO‐Based Process of the Same Capacity -- 10.4.1 Biodiesel Process Using WCO as Raw Material -- 10.4.2 Comparative Analysis -- 10.5 Comparison with the Microalgae‐Based Processes -- 10.6 Conclusions -- Acknowledgment -- Appendix 10.A -- Exercises -- References -- Chapter 11 Thermochemical Processes for the Transformation of Biomass into Biofuels -- 11.1 Introduction -- 11.2 Biomass and Biofuels -- 11.3 Combustion -- 11.4 Gasification -- 11.4.1 Fixed Bed Gasification -- 11.4.2 Fluidized Bed Gasification -- 11.4.3 Dual Fluidized Bed Gasification -- 11.4.4 Hydrothermal Gasification -- 11.4.5 Supercritical Water Gasification -- 11.4.6 Plasma Gasification -- 11.4.7 Catalyzed Gasification -- 11.4.8 Fischer-Tropsch Synthesis -- 11.5 Liquefaction -- 11.6 Pyrolysis -- 11.6.1 Slow Pyrolysis -- 11.6.2 Fast Pyrolysis -- 11.6.3 Flash Pyrolysis -- 11.6.4 Catalytic Biomass Pyrolysis -- 11.6.5 Microwave Heating -- 11.6.6 Product Separation -- 11.7 Carbonization -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Intensified Purification Alternative for Methyl Ethyl Ketone Production: Economic, Environmental, Safety and Control Issues -- 12.1 Introduction -- 12.2 Problem Statement and Case Study -- 12.3 Evaluation Indexes and Optimization Problem -- 12.3.1 Total Annual Cost Calculation -- 12.3.2 Environmental Index Calculation -- 12.3.3 Individual Risk Index -- 12.3.4 Controllability Index Calculation -- 12.3.5 Multi‐Objective Optimization Problem -- 12.4 Global Optimization Methodology -- 12.5 Results -- 12.6 Conclusions
Acknowledgments -- References -- Chapter 13 Present and Future of Biofuels -- 13.1 Introduction -- 13.2 Some Representative Biofuels -- 13.2.1 Bioethanol -- 13.2.2 Biodiesel -- 13.2.3 Biobutanol -- 13.2.4 Biojet Fuel -- 13.2.5 Biogas -- 13.3 Perspectives and Future of Biofuels -- References -- Index -- EULA.
Beschreibung:1 Online-Ressource (384 Seiten)
ISBN:9781119580317
9781119580331

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!