Process systems engineering for biofuels development:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ, USA ; Chichester, West Sussex, UK
Wiley
2020
|
Schriftenreihe: | Wiley series in renewable resource
|
Online-Zugang: | TUM01 |
Beschreibung: | Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Introduction -- 1.1 Importance of Biofuels and Overview of their Production -- 1.2 Significance of Process Systems Engineering for Biofuels Production -- 1.2.1 Modeling of Physicochemical Properties of Thermodynamic Systems Related to Biofuels -- 1.2.2 Intensification of the Biomass Transformation Routes for the Production of Biofuels -- 1.2.3 Computer‐Aided Methodologies for Process Modeling, Design, Optimization, and Control Including Supply Chain and Life Cycle Analyses -- 1.3 Overview of this Book -- References -- Chapter 2 Waste Biomass Suitable as Feedstock for Biofuels Production -- 2.1 Introduction -- 2.1.1 The Need for Biofuels -- 2.1.2 Problem Definition -- 2.1.3 The Biomass Pool -- 2.2 Kinds of Feedstock -- 2.2.1 Spent Coffee Grounds -- 2.2.2 Lignocellulose Biomass -- 2.2.3 Palm, Olive, Coconut, Avocado, and Argan Oil Production Residues -- 2.2.4 Citrus -- 2.2.5 Grape Marc -- 2.2.6 Waste Oil and Cooking Oil -- 2.2.7 Additional Sources -- 2.3 Conclusions -- Acknowledgment -- References -- Chapter 3 Multiscale Analysis for the Exploitation of Bioresources: From Reactor Design to Supply Chain Analysis -- 3.1 Introduction -- 3.2 Unit Level -- 3.2.1 Short Cut Methods -- 3.2.2 Mechanistic Models -- 3.2.3 Rules of Thumb -- 3.2.4 Dimensionless Analysis -- 3.2.5 Surrogate Models -- 3.2.6 Experimental Correlations -- 3.3 Process Synthesis -- 3.3.1 Heuristic Based -- 3.3.2 Supestructure Optimization -- 3.3.3 Environmental Impact Metrics -- 3.3.4 Safety Considerations -- 3.4 The Product Design Problem -- 3.4.1 Product Design: Engineering Biomass -- 3.4.2 Blending Problems -- 3.5 Supply Chain Level -- 3.5.1 Introduction -- 3.5.2 Modeling Issues -- 3.6 Multiscale Links and Considerations -- Acknowledgment -- Nomenclature -- References Chapter 4 Challenges in the Modeling of Thermodynamic Properties and Phase Equilibrium Calculations for Biofuels Process Design -- 4.1 Introduction -- 4.2 Thermodynamic Modeling Framework: Elements, Structure, and Organization -- 4.3 Thermodynamics of Biofuel Systems -- 4.3.1 Phase Equilibria -- 4.3.2 Thermodynamic Models -- 4.4 Sources of Data for Biofuels Process Design -- 4.5 Methods for Predicting Data for Biofuels Process Design -- 4.5.1 Group Contribution Methods for Biofuels Process Design -- 4.5.2 Quantitative Structure-Property Relationships for Biofuels Process Design -- 4.6 Challenges for the Biofuels Process Design Methods -- 4.7 Influence of Uncertainties in Thermophysical Properties of Pure Compounds on the Phase Behavior of Biofuel Systems -- 4.8 Conclusions -- Acknowledgment -- Exercises -- References -- Chapter 5 Up‐grading of Waste Oil: A Key Step in the Future of Biofuel Production -- 5.1 Introduction -- 5.2 Physicochemical Pretreatments of Waste Oils: Removal of Contaminants -- 5.3 Direct Treatment and Conversion of FFAs into Methyl Esters -- 5.3.1 Homogeneous Catalysis: Brønsted and Lewis Acids -- 5.3.2 Heterogeneous Catalysis -- 5.3.3 Enzymatic Biodiesel Production -- 5.3.4 ILs Biodiesel Production -- 5.3.5 Use of Metal Hydrated Salts -- 5.4 Future Trends of the Pretreatments of Waste Oils -- 5.5 Conclusions -- Acknowledgment -- Abbreviations -- References -- Chapter 6 Production of Biojet Fuel from Waste Raw Materials: A Review -- 6.1 Introduction -- 6.2 Waste Triglyceride Feedstock -- 6.3 Waste Lignocellulosic Feedstock -- 6.4 Waste Sugar and Starchy Feedstock -- 6.5 Main Challenges and Future Trends -- 6.6 Conclusions -- Acknowledgments -- References -- Chapter 7 Computer‐Aided Design for Genetic Modulation to Improve Biofuel Production -- 7.1 Introduction -- 7.2 Method -- 7.2.1 Flux Balance Analysis 7.2.2 Flux Variability Analysis -- 7.2.3 Minimization of Metabolic Adjustment -- 7.2.4 Regulatory On‐Off Minimization -- 7.2.5 Optimal Strain Design Problem -- 7.3 Computer‐Aided Strain Design Tool -- 7.4 Examples -- 7.4.1 E. coli Core Model -- 7.4.2 Genome‐Scale Metabolic Model of E. coli iAF1260 -- 7.5 Conclusions -- Appendix 7.A The SBP Program -- References -- Chapter 8 Implementation of Biodiesel Production Process Using Enzyme‐Catalyzed Routes -- 8.1 Introduction -- 8.2 Biodiesel Production Routes: Chemical versus Enzymatic Catalysts -- 8.2.1 Chemical Catalysts -- 8.2.2 Enzymatic Catalysts -- 8.3 Optimal Reaction Conditions and Kinetic Modeling -- 8.3.1 Evaluation of the Reaction Conditions -- 8.3.2 Kinetic Modeling -- 8.4 Process Simulation and Economic Evaluation -- 8.5 Reuse of Enzyme for the Transesterification Reaction -- 8.5.1 Recovery of Eversa Transform by Means of Centrifugation -- 8.5.2 Recovery of Eversa Transform by Means of Ceramic Membranes -- 8.6 Environmental Impact and Final Remarks -- Acknowledgments -- Nomenclature -- References -- Chapter 9 Process Analysis of Biodiesel Production - Kinetic Modeling, Simulation, and Process Design -- 9.1 Introduction -- 9.1.1 Homogeneous‐Based Reactions -- 9.1.2 Heterogeneous‐Based Reactions -- 9.1.3 Enzyme‐Catalyzed Reactions -- 9.1.4 Supercritical Route Reactions -- 9.1.5 Methanol or Ethanol for Biodiesel Synthesis -- 9.2 Getting Started with Aspen Plus V10 -- 9.2.1 Pure Compounds -- 9.2.2 Mixture Parameters -- 9.3 Kinetic Study -- 9.3.1 Esterification Reaction -- 9.3.2 Experimental Reaction Data Regression -- 9.3.3 Transesterification Reaction -- 9.3.4 Supercritical Route -- 9.4 Process Design -- 9.4.1 Esterification Reaction -- 9.4.2 Methanol Recycling -- 9.4.3 Transesterification Reaction -- 9.4.4 Biodiesel Purification -- 9.4.5 Additional Resources -- 9.5 Energy and Economic Analysis 9.6 Concluding Remarks -- Acknowledgment -- Exercises -- References -- Chapter 10 Process Development, Design and Analysis of Microalgal Biodiesel Production Aided by Microwave and Ultrasonication -- 10.1 Introduction -- 10.2 Process Development and Modeling -- 10.3 Sizing and Cost Analysis -- 10.4 Comparison with the WCO‐Based Process of the Same Capacity -- 10.4.1 Biodiesel Process Using WCO as Raw Material -- 10.4.2 Comparative Analysis -- 10.5 Comparison with the Microalgae‐Based Processes -- 10.6 Conclusions -- Acknowledgment -- Appendix 10.A -- Exercises -- References -- Chapter 11 Thermochemical Processes for the Transformation of Biomass into Biofuels -- 11.1 Introduction -- 11.2 Biomass and Biofuels -- 11.3 Combustion -- 11.4 Gasification -- 11.4.1 Fixed Bed Gasification -- 11.4.2 Fluidized Bed Gasification -- 11.4.3 Dual Fluidized Bed Gasification -- 11.4.4 Hydrothermal Gasification -- 11.4.5 Supercritical Water Gasification -- 11.4.6 Plasma Gasification -- 11.4.7 Catalyzed Gasification -- 11.4.8 Fischer-Tropsch Synthesis -- 11.5 Liquefaction -- 11.6 Pyrolysis -- 11.6.1 Slow Pyrolysis -- 11.6.2 Fast Pyrolysis -- 11.6.3 Flash Pyrolysis -- 11.6.4 Catalytic Biomass Pyrolysis -- 11.6.5 Microwave Heating -- 11.6.6 Product Separation -- 11.7 Carbonization -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Intensified Purification Alternative for Methyl Ethyl Ketone Production: Economic, Environmental, Safety and Control Issues -- 12.1 Introduction -- 12.2 Problem Statement and Case Study -- 12.3 Evaluation Indexes and Optimization Problem -- 12.3.1 Total Annual Cost Calculation -- 12.3.2 Environmental Index Calculation -- 12.3.3 Individual Risk Index -- 12.3.4 Controllability Index Calculation -- 12.3.5 Multi‐Objective Optimization Problem -- 12.4 Global Optimization Methodology -- 12.5 Results -- 12.6 Conclusions Acknowledgments -- References -- Chapter 13 Present and Future of Biofuels -- 13.1 Introduction -- 13.2 Some Representative Biofuels -- 13.2.1 Bioethanol -- 13.2.2 Biodiesel -- 13.2.3 Biobutanol -- 13.2.4 Biojet Fuel -- 13.2.5 Biogas -- 13.3 Perspectives and Future of Biofuels -- References -- Index -- EULA. |
Beschreibung: | 1 Online-Ressource (384 Seiten) |
ISBN: | 9781119580317 9781119580331 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047017299 | ||
003 | DE-604 | ||
005 | 20230728 | ||
007 | cr|uuu---uuuuu | ||
008 | 201119s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781119580317 |c PDF |9 978-1-119-58031-7 | ||
020 | |a 9781119580331 |c ePub |9 978-1-119-58033-1 | ||
035 | |a (ZDB-30-PQE)EBC6270500 | ||
035 | |a (OCoLC)1224016575 | ||
035 | |a (DE-599)BVBBV047017299 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 662.88 | |
084 | |a CIT 647 |2 stub | ||
245 | 1 | 0 | |a Process systems engineering for biofuels development |c edited by Adrián Bonilla-Petriciolet, Gade Pandu Rangaiah |
264 | 1 | |a Hoboken, NJ, USA ; Chichester, West Sussex, UK |b Wiley |c 2020 | |
300 | |a 1 Online-Ressource (384 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley series in renewable resource | |
500 | |a Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Introduction -- 1.1 Importance of Biofuels and Overview of their Production -- 1.2 Significance of Process Systems Engineering for Biofuels Production -- 1.2.1 Modeling of Physicochemical Properties of Thermodynamic Systems Related to Biofuels -- 1.2.2 Intensification of the Biomass Transformation Routes for the Production of Biofuels -- 1.2.3 Computer‐Aided Methodologies for Process Modeling, Design, Optimization, and Control Including Supply Chain and Life Cycle Analyses -- 1.3 Overview of this Book -- References -- Chapter 2 Waste Biomass Suitable as Feedstock for Biofuels Production -- 2.1 Introduction -- 2.1.1 The Need for Biofuels -- 2.1.2 Problem Definition -- 2.1.3 The Biomass Pool -- 2.2 Kinds of Feedstock -- 2.2.1 Spent Coffee Grounds -- 2.2.2 Lignocellulose Biomass -- 2.2.3 Palm, Olive, Coconut, Avocado, and Argan Oil Production Residues -- 2.2.4 Citrus -- 2.2.5 Grape Marc -- 2.2.6 Waste Oil and Cooking Oil -- 2.2.7 Additional Sources -- 2.3 Conclusions -- Acknowledgment -- References -- Chapter 3 Multiscale Analysis for the Exploitation of Bioresources: From Reactor Design to Supply Chain Analysis -- 3.1 Introduction -- 3.2 Unit Level -- 3.2.1 Short Cut Methods -- 3.2.2 Mechanistic Models -- 3.2.3 Rules of Thumb -- 3.2.4 Dimensionless Analysis -- 3.2.5 Surrogate Models -- 3.2.6 Experimental Correlations -- 3.3 Process Synthesis -- 3.3.1 Heuristic Based -- 3.3.2 Supestructure Optimization -- 3.3.3 Environmental Impact Metrics -- 3.3.4 Safety Considerations -- 3.4 The Product Design Problem -- 3.4.1 Product Design: Engineering Biomass -- 3.4.2 Blending Problems -- 3.5 Supply Chain Level -- 3.5.1 Introduction -- 3.5.2 Modeling Issues -- 3.6 Multiscale Links and Considerations -- Acknowledgment -- Nomenclature -- References | ||
500 | |a Chapter 4 Challenges in the Modeling of Thermodynamic Properties and Phase Equilibrium Calculations for Biofuels Process Design -- 4.1 Introduction -- 4.2 Thermodynamic Modeling Framework: Elements, Structure, and Organization -- 4.3 Thermodynamics of Biofuel Systems -- 4.3.1 Phase Equilibria -- 4.3.2 Thermodynamic Models -- 4.4 Sources of Data for Biofuels Process Design -- 4.5 Methods for Predicting Data for Biofuels Process Design -- 4.5.1 Group Contribution Methods for Biofuels Process Design -- 4.5.2 Quantitative Structure-Property Relationships for Biofuels Process Design -- 4.6 Challenges for the Biofuels Process Design Methods -- 4.7 Influence of Uncertainties in Thermophysical Properties of Pure Compounds on the Phase Behavior of Biofuel Systems -- 4.8 Conclusions -- Acknowledgment -- Exercises -- References -- Chapter 5 Up‐grading of Waste Oil: A Key Step in the Future of Biofuel Production -- 5.1 Introduction -- 5.2 Physicochemical Pretreatments of Waste Oils: Removal of Contaminants -- 5.3 Direct Treatment and Conversion of FFAs into Methyl Esters -- 5.3.1 Homogeneous Catalysis: Brønsted and Lewis Acids -- 5.3.2 Heterogeneous Catalysis -- 5.3.3 Enzymatic Biodiesel Production -- 5.3.4 ILs Biodiesel Production -- 5.3.5 Use of Metal Hydrated Salts -- 5.4 Future Trends of the Pretreatments of Waste Oils -- 5.5 Conclusions -- Acknowledgment -- Abbreviations -- References -- Chapter 6 Production of Biojet Fuel from Waste Raw Materials: A Review -- 6.1 Introduction -- 6.2 Waste Triglyceride Feedstock -- 6.3 Waste Lignocellulosic Feedstock -- 6.4 Waste Sugar and Starchy Feedstock -- 6.5 Main Challenges and Future Trends -- 6.6 Conclusions -- Acknowledgments -- References -- Chapter 7 Computer‐Aided Design for Genetic Modulation to Improve Biofuel Production -- 7.1 Introduction -- 7.2 Method -- 7.2.1 Flux Balance Analysis | ||
500 | |a 7.2.2 Flux Variability Analysis -- 7.2.3 Minimization of Metabolic Adjustment -- 7.2.4 Regulatory On‐Off Minimization -- 7.2.5 Optimal Strain Design Problem -- 7.3 Computer‐Aided Strain Design Tool -- 7.4 Examples -- 7.4.1 E. coli Core Model -- 7.4.2 Genome‐Scale Metabolic Model of E. coli iAF1260 -- 7.5 Conclusions -- Appendix 7.A The SBP Program -- References -- Chapter 8 Implementation of Biodiesel Production Process Using Enzyme‐Catalyzed Routes -- 8.1 Introduction -- 8.2 Biodiesel Production Routes: Chemical versus Enzymatic Catalysts -- 8.2.1 Chemical Catalysts -- 8.2.2 Enzymatic Catalysts -- 8.3 Optimal Reaction Conditions and Kinetic Modeling -- 8.3.1 Evaluation of the Reaction Conditions -- 8.3.2 Kinetic Modeling -- 8.4 Process Simulation and Economic Evaluation -- 8.5 Reuse of Enzyme for the Transesterification Reaction -- 8.5.1 Recovery of Eversa Transform by Means of Centrifugation -- 8.5.2 Recovery of Eversa Transform by Means of Ceramic Membranes -- 8.6 Environmental Impact and Final Remarks -- Acknowledgments -- Nomenclature -- References -- Chapter 9 Process Analysis of Biodiesel Production - Kinetic Modeling, Simulation, and Process Design -- 9.1 Introduction -- 9.1.1 Homogeneous‐Based Reactions -- 9.1.2 Heterogeneous‐Based Reactions -- 9.1.3 Enzyme‐Catalyzed Reactions -- 9.1.4 Supercritical Route Reactions -- 9.1.5 Methanol or Ethanol for Biodiesel Synthesis -- 9.2 Getting Started with Aspen Plus V10 -- 9.2.1 Pure Compounds -- 9.2.2 Mixture Parameters -- 9.3 Kinetic Study -- 9.3.1 Esterification Reaction -- 9.3.2 Experimental Reaction Data Regression -- 9.3.3 Transesterification Reaction -- 9.3.4 Supercritical Route -- 9.4 Process Design -- 9.4.1 Esterification Reaction -- 9.4.2 Methanol Recycling -- 9.4.3 Transesterification Reaction -- 9.4.4 Biodiesel Purification -- 9.4.5 Additional Resources -- 9.5 Energy and Economic Analysis | ||
500 | |a 9.6 Concluding Remarks -- Acknowledgment -- Exercises -- References -- Chapter 10 Process Development, Design and Analysis of Microalgal Biodiesel Production Aided by Microwave and Ultrasonication -- 10.1 Introduction -- 10.2 Process Development and Modeling -- 10.3 Sizing and Cost Analysis -- 10.4 Comparison with the WCO‐Based Process of the Same Capacity -- 10.4.1 Biodiesel Process Using WCO as Raw Material -- 10.4.2 Comparative Analysis -- 10.5 Comparison with the Microalgae‐Based Processes -- 10.6 Conclusions -- Acknowledgment -- Appendix 10.A -- Exercises -- References -- Chapter 11 Thermochemical Processes for the Transformation of Biomass into Biofuels -- 11.1 Introduction -- 11.2 Biomass and Biofuels -- 11.3 Combustion -- 11.4 Gasification -- 11.4.1 Fixed Bed Gasification -- 11.4.2 Fluidized Bed Gasification -- 11.4.3 Dual Fluidized Bed Gasification -- 11.4.4 Hydrothermal Gasification -- 11.4.5 Supercritical Water Gasification -- 11.4.6 Plasma Gasification -- 11.4.7 Catalyzed Gasification -- 11.4.8 Fischer-Tropsch Synthesis -- 11.5 Liquefaction -- 11.6 Pyrolysis -- 11.6.1 Slow Pyrolysis -- 11.6.2 Fast Pyrolysis -- 11.6.3 Flash Pyrolysis -- 11.6.4 Catalytic Biomass Pyrolysis -- 11.6.5 Microwave Heating -- 11.6.6 Product Separation -- 11.7 Carbonization -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Intensified Purification Alternative for Methyl Ethyl Ketone Production: Economic, Environmental, Safety and Control Issues -- 12.1 Introduction -- 12.2 Problem Statement and Case Study -- 12.3 Evaluation Indexes and Optimization Problem -- 12.3.1 Total Annual Cost Calculation -- 12.3.2 Environmental Index Calculation -- 12.3.3 Individual Risk Index -- 12.3.4 Controllability Index Calculation -- 12.3.5 Multi‐Objective Optimization Problem -- 12.4 Global Optimization Methodology -- 12.5 Results -- 12.6 Conclusions | ||
500 | |a Acknowledgments -- References -- Chapter 13 Present and Future of Biofuels -- 13.1 Introduction -- 13.2 Some Representative Biofuels -- 13.2.1 Bioethanol -- 13.2.2 Biodiesel -- 13.2.3 Biobutanol -- 13.2.4 Biojet Fuel -- 13.2.5 Biogas -- 13.3 Perspectives and Future of Biofuels -- References -- Index -- EULA. | ||
700 | 1 | |a Bonilla-Petriciolet, Adrián |0 (DE-588)1042020159 |4 edt | |
700 | 1 | |a Rangaiah, Gade Pandu |0 (DE-588)1217504257 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-58027-0 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032424834 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6270500 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181979156971520 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Bonilla-Petriciolet, Adrián Rangaiah, Gade Pandu |
author2_role | edt edt |
author2_variant | a b p abp g p r gp gpr |
author_GND | (DE-588)1042020159 (DE-588)1217504257 |
author_facet | Bonilla-Petriciolet, Adrián Rangaiah, Gade Pandu |
building | Verbundindex |
bvnumber | BV047017299 |
classification_tum | CIT 647 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC6270500 (OCoLC)1224016575 (DE-599)BVBBV047017299 |
dewey-full | 662.88 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 662 - Explosives, fuels & related products |
dewey-raw | 662.88 |
dewey-search | 662.88 |
dewey-sort | 3662.88 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Chemie-Ingenieurwesen |
discipline_str_mv | Chemie / Pharmazie Chemie-Ingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09252nmm a2200421zc 4500</leader><controlfield tag="001">BV047017299</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230728 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201119s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119580317</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-119-58031-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119580331</subfield><subfield code="c">ePub</subfield><subfield code="9">978-1-119-58033-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6270500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224016575</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047017299</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">662.88</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 647</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Process systems engineering for biofuels development</subfield><subfield code="c">edited by Adrián Bonilla-Petriciolet, Gade Pandu Rangaiah</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ, USA ; Chichester, West Sussex, UK</subfield><subfield code="b">Wiley</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (384 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in renewable resource</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Introduction -- 1.1 Importance of Biofuels and Overview of their Production -- 1.2 Significance of Process Systems Engineering for Biofuels Production -- 1.2.1 Modeling of Physicochemical Properties of Thermodynamic Systems Related to Biofuels -- 1.2.2 Intensification of the Biomass Transformation Routes for the Production of Biofuels -- 1.2.3 Computer‐Aided Methodologies for Process Modeling, Design, Optimization, and Control Including Supply Chain and Life Cycle Analyses -- 1.3 Overview of this Book -- References -- Chapter 2 Waste Biomass Suitable as Feedstock for Biofuels Production -- 2.1 Introduction -- 2.1.1 The Need for Biofuels -- 2.1.2 Problem Definition -- 2.1.3 The Biomass Pool -- 2.2 Kinds of Feedstock -- 2.2.1 Spent Coffee Grounds -- 2.2.2 Lignocellulose Biomass -- 2.2.3 Palm, Olive, Coconut, Avocado, and Argan Oil Production Residues -- 2.2.4 Citrus -- 2.2.5 Grape Marc -- 2.2.6 Waste Oil and Cooking Oil -- 2.2.7 Additional Sources -- 2.3 Conclusions -- Acknowledgment -- References -- Chapter 3 Multiscale Analysis for the Exploitation of Bioresources: From Reactor Design to Supply Chain Analysis -- 3.1 Introduction -- 3.2 Unit Level -- 3.2.1 Short Cut Methods -- 3.2.2 Mechanistic Models -- 3.2.3 Rules of Thumb -- 3.2.4 Dimensionless Analysis -- 3.2.5 Surrogate Models -- 3.2.6 Experimental Correlations -- 3.3 Process Synthesis -- 3.3.1 Heuristic Based -- 3.3.2 Supestructure Optimization -- 3.3.3 Environmental Impact Metrics -- 3.3.4 Safety Considerations -- 3.4 The Product Design Problem -- 3.4.1 Product Design: Engineering Biomass -- 3.4.2 Blending Problems -- 3.5 Supply Chain Level -- 3.5.1 Introduction -- 3.5.2 Modeling Issues -- 3.6 Multiscale Links and Considerations -- Acknowledgment -- Nomenclature -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 4 Challenges in the Modeling of Thermodynamic Properties and Phase Equilibrium Calculations for Biofuels Process Design -- 4.1 Introduction -- 4.2 Thermodynamic Modeling Framework: Elements, Structure, and Organization -- 4.3 Thermodynamics of Biofuel Systems -- 4.3.1 Phase Equilibria -- 4.3.2 Thermodynamic Models -- 4.4 Sources of Data for Biofuels Process Design -- 4.5 Methods for Predicting Data for Biofuels Process Design -- 4.5.1 Group Contribution Methods for Biofuels Process Design -- 4.5.2 Quantitative Structure-Property Relationships for Biofuels Process Design -- 4.6 Challenges for the Biofuels Process Design Methods -- 4.7 Influence of Uncertainties in Thermophysical Properties of Pure Compounds on the Phase Behavior of Biofuel Systems -- 4.8 Conclusions -- Acknowledgment -- Exercises -- References -- Chapter 5 Up‐grading of Waste Oil: A Key Step in the Future of Biofuel Production -- 5.1 Introduction -- 5.2 Physicochemical Pretreatments of Waste Oils: Removal of Contaminants -- 5.3 Direct Treatment and Conversion of FFAs into Methyl Esters -- 5.3.1 Homogeneous Catalysis: Brønsted and Lewis Acids -- 5.3.2 Heterogeneous Catalysis -- 5.3.3 Enzymatic Biodiesel Production -- 5.3.4 ILs Biodiesel Production -- 5.3.5 Use of Metal Hydrated Salts -- 5.4 Future Trends of the Pretreatments of Waste Oils -- 5.5 Conclusions -- Acknowledgment -- Abbreviations -- References -- Chapter 6 Production of Biojet Fuel from Waste Raw Materials: A Review -- 6.1 Introduction -- 6.2 Waste Triglyceride Feedstock -- 6.3 Waste Lignocellulosic Feedstock -- 6.4 Waste Sugar and Starchy Feedstock -- 6.5 Main Challenges and Future Trends -- 6.6 Conclusions -- Acknowledgments -- References -- Chapter 7 Computer‐Aided Design for Genetic Modulation to Improve Biofuel Production -- 7.1 Introduction -- 7.2 Method -- 7.2.1 Flux Balance Analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.2.2 Flux Variability Analysis -- 7.2.3 Minimization of Metabolic Adjustment -- 7.2.4 Regulatory On‐Off Minimization -- 7.2.5 Optimal Strain Design Problem -- 7.3 Computer‐Aided Strain Design Tool -- 7.4 Examples -- 7.4.1 E. coli Core Model -- 7.4.2 Genome‐Scale Metabolic Model of E. coli iAF1260 -- 7.5 Conclusions -- Appendix 7.A The SBP Program -- References -- Chapter 8 Implementation of Biodiesel Production Process Using Enzyme‐Catalyzed Routes -- 8.1 Introduction -- 8.2 Biodiesel Production Routes: Chemical versus Enzymatic Catalysts -- 8.2.1 Chemical Catalysts -- 8.2.2 Enzymatic Catalysts -- 8.3 Optimal Reaction Conditions and Kinetic Modeling -- 8.3.1 Evaluation of the Reaction Conditions -- 8.3.2 Kinetic Modeling -- 8.4 Process Simulation and Economic Evaluation -- 8.5 Reuse of Enzyme for the Transesterification Reaction -- 8.5.1 Recovery of Eversa Transform by Means of Centrifugation -- 8.5.2 Recovery of Eversa Transform by Means of Ceramic Membranes -- 8.6 Environmental Impact and Final Remarks -- Acknowledgments -- Nomenclature -- References -- Chapter 9 Process Analysis of Biodiesel Production - Kinetic Modeling, Simulation, and Process Design -- 9.1 Introduction -- 9.1.1 Homogeneous‐Based Reactions -- 9.1.2 Heterogeneous‐Based Reactions -- 9.1.3 Enzyme‐Catalyzed Reactions -- 9.1.4 Supercritical Route Reactions -- 9.1.5 Methanol or Ethanol for Biodiesel Synthesis -- 9.2 Getting Started with Aspen Plus V10 -- 9.2.1 Pure Compounds -- 9.2.2 Mixture Parameters -- 9.3 Kinetic Study -- 9.3.1 Esterification Reaction -- 9.3.2 Experimental Reaction Data Regression -- 9.3.3 Transesterification Reaction -- 9.3.4 Supercritical Route -- 9.4 Process Design -- 9.4.1 Esterification Reaction -- 9.4.2 Methanol Recycling -- 9.4.3 Transesterification Reaction -- 9.4.4 Biodiesel Purification -- 9.4.5 Additional Resources -- 9.5 Energy and Economic Analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.6 Concluding Remarks -- Acknowledgment -- Exercises -- References -- Chapter 10 Process Development, Design and Analysis of Microalgal Biodiesel Production Aided by Microwave and Ultrasonication -- 10.1 Introduction -- 10.2 Process Development and Modeling -- 10.3 Sizing and Cost Analysis -- 10.4 Comparison with the WCO‐Based Process of the Same Capacity -- 10.4.1 Biodiesel Process Using WCO as Raw Material -- 10.4.2 Comparative Analysis -- 10.5 Comparison with the Microalgae‐Based Processes -- 10.6 Conclusions -- Acknowledgment -- Appendix 10.A -- Exercises -- References -- Chapter 11 Thermochemical Processes for the Transformation of Biomass into Biofuels -- 11.1 Introduction -- 11.2 Biomass and Biofuels -- 11.3 Combustion -- 11.4 Gasification -- 11.4.1 Fixed Bed Gasification -- 11.4.2 Fluidized Bed Gasification -- 11.4.3 Dual Fluidized Bed Gasification -- 11.4.4 Hydrothermal Gasification -- 11.4.5 Supercritical Water Gasification -- 11.4.6 Plasma Gasification -- 11.4.7 Catalyzed Gasification -- 11.4.8 Fischer-Tropsch Synthesis -- 11.5 Liquefaction -- 11.6 Pyrolysis -- 11.6.1 Slow Pyrolysis -- 11.6.2 Fast Pyrolysis -- 11.6.3 Flash Pyrolysis -- 11.6.4 Catalytic Biomass Pyrolysis -- 11.6.5 Microwave Heating -- 11.6.6 Product Separation -- 11.7 Carbonization -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Intensified Purification Alternative for Methyl Ethyl Ketone Production: Economic, Environmental, Safety and Control Issues -- 12.1 Introduction -- 12.2 Problem Statement and Case Study -- 12.3 Evaluation Indexes and Optimization Problem -- 12.3.1 Total Annual Cost Calculation -- 12.3.2 Environmental Index Calculation -- 12.3.3 Individual Risk Index -- 12.3.4 Controllability Index Calculation -- 12.3.5 Multi‐Objective Optimization Problem -- 12.4 Global Optimization Methodology -- 12.5 Results -- 12.6 Conclusions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Acknowledgments -- References -- Chapter 13 Present and Future of Biofuels -- 13.1 Introduction -- 13.2 Some Representative Biofuels -- 13.2.1 Bioethanol -- 13.2.2 Biodiesel -- 13.2.3 Biobutanol -- 13.2.4 Biojet Fuel -- 13.2.5 Biogas -- 13.3 Perspectives and Future of Biofuels -- References -- Index -- EULA.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bonilla-Petriciolet, Adrián</subfield><subfield code="0">(DE-588)1042020159</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rangaiah, Gade Pandu</subfield><subfield code="0">(DE-588)1217504257</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-58027-0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032424834</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6270500</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047017299 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:58:21Z |
indexdate | 2024-07-10T09:00:15Z |
institution | BVB |
isbn | 9781119580317 9781119580331 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032424834 |
oclc_num | 1224016575 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (384 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series in renewable resource |
spelling | Process systems engineering for biofuels development edited by Adrián Bonilla-Petriciolet, Gade Pandu Rangaiah Hoboken, NJ, USA ; Chichester, West Sussex, UK Wiley 2020 1 Online-Ressource (384 Seiten) txt rdacontent c rdamedia cr rdacarrier Wiley series in renewable resource Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Introduction -- 1.1 Importance of Biofuels and Overview of their Production -- 1.2 Significance of Process Systems Engineering for Biofuels Production -- 1.2.1 Modeling of Physicochemical Properties of Thermodynamic Systems Related to Biofuels -- 1.2.2 Intensification of the Biomass Transformation Routes for the Production of Biofuels -- 1.2.3 Computer‐Aided Methodologies for Process Modeling, Design, Optimization, and Control Including Supply Chain and Life Cycle Analyses -- 1.3 Overview of this Book -- References -- Chapter 2 Waste Biomass Suitable as Feedstock for Biofuels Production -- 2.1 Introduction -- 2.1.1 The Need for Biofuels -- 2.1.2 Problem Definition -- 2.1.3 The Biomass Pool -- 2.2 Kinds of Feedstock -- 2.2.1 Spent Coffee Grounds -- 2.2.2 Lignocellulose Biomass -- 2.2.3 Palm, Olive, Coconut, Avocado, and Argan Oil Production Residues -- 2.2.4 Citrus -- 2.2.5 Grape Marc -- 2.2.6 Waste Oil and Cooking Oil -- 2.2.7 Additional Sources -- 2.3 Conclusions -- Acknowledgment -- References -- Chapter 3 Multiscale Analysis for the Exploitation of Bioresources: From Reactor Design to Supply Chain Analysis -- 3.1 Introduction -- 3.2 Unit Level -- 3.2.1 Short Cut Methods -- 3.2.2 Mechanistic Models -- 3.2.3 Rules of Thumb -- 3.2.4 Dimensionless Analysis -- 3.2.5 Surrogate Models -- 3.2.6 Experimental Correlations -- 3.3 Process Synthesis -- 3.3.1 Heuristic Based -- 3.3.2 Supestructure Optimization -- 3.3.3 Environmental Impact Metrics -- 3.3.4 Safety Considerations -- 3.4 The Product Design Problem -- 3.4.1 Product Design: Engineering Biomass -- 3.4.2 Blending Problems -- 3.5 Supply Chain Level -- 3.5.1 Introduction -- 3.5.2 Modeling Issues -- 3.6 Multiscale Links and Considerations -- Acknowledgment -- Nomenclature -- References Chapter 4 Challenges in the Modeling of Thermodynamic Properties and Phase Equilibrium Calculations for Biofuels Process Design -- 4.1 Introduction -- 4.2 Thermodynamic Modeling Framework: Elements, Structure, and Organization -- 4.3 Thermodynamics of Biofuel Systems -- 4.3.1 Phase Equilibria -- 4.3.2 Thermodynamic Models -- 4.4 Sources of Data for Biofuels Process Design -- 4.5 Methods for Predicting Data for Biofuels Process Design -- 4.5.1 Group Contribution Methods for Biofuels Process Design -- 4.5.2 Quantitative Structure-Property Relationships for Biofuels Process Design -- 4.6 Challenges for the Biofuels Process Design Methods -- 4.7 Influence of Uncertainties in Thermophysical Properties of Pure Compounds on the Phase Behavior of Biofuel Systems -- 4.8 Conclusions -- Acknowledgment -- Exercises -- References -- Chapter 5 Up‐grading of Waste Oil: A Key Step in the Future of Biofuel Production -- 5.1 Introduction -- 5.2 Physicochemical Pretreatments of Waste Oils: Removal of Contaminants -- 5.3 Direct Treatment and Conversion of FFAs into Methyl Esters -- 5.3.1 Homogeneous Catalysis: Brønsted and Lewis Acids -- 5.3.2 Heterogeneous Catalysis -- 5.3.3 Enzymatic Biodiesel Production -- 5.3.4 ILs Biodiesel Production -- 5.3.5 Use of Metal Hydrated Salts -- 5.4 Future Trends of the Pretreatments of Waste Oils -- 5.5 Conclusions -- Acknowledgment -- Abbreviations -- References -- Chapter 6 Production of Biojet Fuel from Waste Raw Materials: A Review -- 6.1 Introduction -- 6.2 Waste Triglyceride Feedstock -- 6.3 Waste Lignocellulosic Feedstock -- 6.4 Waste Sugar and Starchy Feedstock -- 6.5 Main Challenges and Future Trends -- 6.6 Conclusions -- Acknowledgments -- References -- Chapter 7 Computer‐Aided Design for Genetic Modulation to Improve Biofuel Production -- 7.1 Introduction -- 7.2 Method -- 7.2.1 Flux Balance Analysis 7.2.2 Flux Variability Analysis -- 7.2.3 Minimization of Metabolic Adjustment -- 7.2.4 Regulatory On‐Off Minimization -- 7.2.5 Optimal Strain Design Problem -- 7.3 Computer‐Aided Strain Design Tool -- 7.4 Examples -- 7.4.1 E. coli Core Model -- 7.4.2 Genome‐Scale Metabolic Model of E. coli iAF1260 -- 7.5 Conclusions -- Appendix 7.A The SBP Program -- References -- Chapter 8 Implementation of Biodiesel Production Process Using Enzyme‐Catalyzed Routes -- 8.1 Introduction -- 8.2 Biodiesel Production Routes: Chemical versus Enzymatic Catalysts -- 8.2.1 Chemical Catalysts -- 8.2.2 Enzymatic Catalysts -- 8.3 Optimal Reaction Conditions and Kinetic Modeling -- 8.3.1 Evaluation of the Reaction Conditions -- 8.3.2 Kinetic Modeling -- 8.4 Process Simulation and Economic Evaluation -- 8.5 Reuse of Enzyme for the Transesterification Reaction -- 8.5.1 Recovery of Eversa Transform by Means of Centrifugation -- 8.5.2 Recovery of Eversa Transform by Means of Ceramic Membranes -- 8.6 Environmental Impact and Final Remarks -- Acknowledgments -- Nomenclature -- References -- Chapter 9 Process Analysis of Biodiesel Production - Kinetic Modeling, Simulation, and Process Design -- 9.1 Introduction -- 9.1.1 Homogeneous‐Based Reactions -- 9.1.2 Heterogeneous‐Based Reactions -- 9.1.3 Enzyme‐Catalyzed Reactions -- 9.1.4 Supercritical Route Reactions -- 9.1.5 Methanol or Ethanol for Biodiesel Synthesis -- 9.2 Getting Started with Aspen Plus V10 -- 9.2.1 Pure Compounds -- 9.2.2 Mixture Parameters -- 9.3 Kinetic Study -- 9.3.1 Esterification Reaction -- 9.3.2 Experimental Reaction Data Regression -- 9.3.3 Transesterification Reaction -- 9.3.4 Supercritical Route -- 9.4 Process Design -- 9.4.1 Esterification Reaction -- 9.4.2 Methanol Recycling -- 9.4.3 Transesterification Reaction -- 9.4.4 Biodiesel Purification -- 9.4.5 Additional Resources -- 9.5 Energy and Economic Analysis 9.6 Concluding Remarks -- Acknowledgment -- Exercises -- References -- Chapter 10 Process Development, Design and Analysis of Microalgal Biodiesel Production Aided by Microwave and Ultrasonication -- 10.1 Introduction -- 10.2 Process Development and Modeling -- 10.3 Sizing and Cost Analysis -- 10.4 Comparison with the WCO‐Based Process of the Same Capacity -- 10.4.1 Biodiesel Process Using WCO as Raw Material -- 10.4.2 Comparative Analysis -- 10.5 Comparison with the Microalgae‐Based Processes -- 10.6 Conclusions -- Acknowledgment -- Appendix 10.A -- Exercises -- References -- Chapter 11 Thermochemical Processes for the Transformation of Biomass into Biofuels -- 11.1 Introduction -- 11.2 Biomass and Biofuels -- 11.3 Combustion -- 11.4 Gasification -- 11.4.1 Fixed Bed Gasification -- 11.4.2 Fluidized Bed Gasification -- 11.4.3 Dual Fluidized Bed Gasification -- 11.4.4 Hydrothermal Gasification -- 11.4.5 Supercritical Water Gasification -- 11.4.6 Plasma Gasification -- 11.4.7 Catalyzed Gasification -- 11.4.8 Fischer-Tropsch Synthesis -- 11.5 Liquefaction -- 11.6 Pyrolysis -- 11.6.1 Slow Pyrolysis -- 11.6.2 Fast Pyrolysis -- 11.6.3 Flash Pyrolysis -- 11.6.4 Catalytic Biomass Pyrolysis -- 11.6.5 Microwave Heating -- 11.6.6 Product Separation -- 11.7 Carbonization -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Intensified Purification Alternative for Methyl Ethyl Ketone Production: Economic, Environmental, Safety and Control Issues -- 12.1 Introduction -- 12.2 Problem Statement and Case Study -- 12.3 Evaluation Indexes and Optimization Problem -- 12.3.1 Total Annual Cost Calculation -- 12.3.2 Environmental Index Calculation -- 12.3.3 Individual Risk Index -- 12.3.4 Controllability Index Calculation -- 12.3.5 Multi‐Objective Optimization Problem -- 12.4 Global Optimization Methodology -- 12.5 Results -- 12.6 Conclusions Acknowledgments -- References -- Chapter 13 Present and Future of Biofuels -- 13.1 Introduction -- 13.2 Some Representative Biofuels -- 13.2.1 Bioethanol -- 13.2.2 Biodiesel -- 13.2.3 Biobutanol -- 13.2.4 Biojet Fuel -- 13.2.5 Biogas -- 13.3 Perspectives and Future of Biofuels -- References -- Index -- EULA. Bonilla-Petriciolet, Adrián (DE-588)1042020159 edt Rangaiah, Gade Pandu (DE-588)1217504257 edt Erscheint auch als Druck-Ausgabe 978-1-119-58027-0 |
spellingShingle | Process systems engineering for biofuels development |
title | Process systems engineering for biofuels development |
title_auth | Process systems engineering for biofuels development |
title_exact_search | Process systems engineering for biofuels development |
title_exact_search_txtP | Process systems engineering for biofuels development |
title_full | Process systems engineering for biofuels development edited by Adrián Bonilla-Petriciolet, Gade Pandu Rangaiah |
title_fullStr | Process systems engineering for biofuels development edited by Adrián Bonilla-Petriciolet, Gade Pandu Rangaiah |
title_full_unstemmed | Process systems engineering for biofuels development edited by Adrián Bonilla-Petriciolet, Gade Pandu Rangaiah |
title_short | Process systems engineering for biofuels development |
title_sort | process systems engineering for biofuels development |
work_keys_str_mv | AT bonillapetricioletadrian processsystemsengineeringforbiofuelsdevelopment AT rangaiahgadepandu processsystemsengineeringforbiofuelsdevelopment |