Unmanned aerial remote sensing: UAS for environmental applications
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
2021
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | TUM01 UEI01 Volltext |
Beschreibung: | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Editors -- Contributors -- Chapter 1 Introduction -- Context -- The Birth of UAVs -- This Book -- Book Chapters -- Chapter 1 - Introduction -- Chapter 2 - From Radio-Controlled Model Aircraft to Drones -- Chapter 3 - Aquatic Vegetation Monitoring with UAS -- Chapter 4 - Unmanned Aerial Vehicles for Riverine Environments -- Chapter 5 - Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Chapter 6 - Unmanned Aerial System Applications to Coastal Environments -- Chapter 7 - UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Chapter 8 - Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Chapter 9 - Autonomous UAV-Based Insect Monitoring -- Chapter 10 - UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Chapter 11 - Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Chapter 12 - Monitoring Oil and Gas Pipelines with Small UAV Systems -- Chapter 13 - Drone-Based Imaging in Archaeology: Current Applications and Future Prospects -- Chapter 14 - Unmanned Aerial System (UAS) Applications in the Built Environment: Towards Automated Building Inspection Procedures Using Drones -- Chapter 15 - The Application of UAVs to Inform Coastal Area Management -- Chapter 16 - From Land to Sea: Monitoring the Underwater Environment with Drone Technology -- Chapter 17 - A Question of UAS Ground Control: Frequency and Distribution -- Chapter 18 - Launch and Recovery System for Improved Fixed-Wing UAV Deployment in Complex Environments -- Chapter 19 - Epilogue -- Acknowledgements -- References -- Chapter 2 From Radio-Controlled Model Aircraft to Drones -- Introduction -- Small Airborne Platforms Environmental Remote Sensing -- Platform Names -- Types of Platforms -- Fixed-Wing -- Rotary-Wing -- Construction -- Engines -- Operational Considerations -- Positioning -- Flying Regulations -- Photography -- Advantages -- Technological Developments -- Today -- Multi-Rotor UAV -- Fixed-Wing UAV -- Combined Multi-Rotor and Fixed-Wing Platforms -- Sensors -- Passive Sensors -- Multispectral and Near Infrared (NIR) -- Short-Wave Infrared (SWIR) -- Hyperspectral -- Thermal -- Fluorescence -- Active Sensors -- Radar -- LIDAR -- Video and Still Cameras -- Stereo Cameras -- Advances in the Technology -- Platforms -- Multiple Drone Configurations -- Ready to Fly (RTF) -- Batteries -- Autonomous Navigation, GPS, and Collision Avoidance -- Sensors -- Software -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 3 Aquatic Vegetation Monitoring with UAS -- Introduction -- Aquatic Vegetation UAS Field Deployments -- Site Selection and Mission Planning -- UAS Hardware -- Ground Control Points (GCPs) -- Lighting, Cloud, and Wind -- Camera Settings -- Fieldwork for Vegetation Biomass -- Fieldwork for Hydraulic Measurements -- Processing Aquatic Vegetation Imagery Data -- Georeferenced Orthomosaic -- Manual Image Segmentation and Classifications -- Automatic Image Segmentation and Classifications -- Geometric Properties of Individual Plants -- Labwork for Aquatic Vegetation Biometrics -- Sample Health and Handling -- Sample Drying Techniques for Fresh Biomass -- Standardised Centrifugal Drying for Fresh Biomass -- Dry Biomass -- Vegetation Volume and Density Estimation -- Biometrics and Biomechanics -- Aquatic Vegetation at Larger Spatial Scales -- Cover -- Biomass -- Hydraulic Interactions -- Targeted Removal of Aquatic Vegetation -- Emerging Technologies in Aquatic Vegetation Surveying -- Hydraulic Measurements from UAS -- Multispectral Imagery Hyperspectral Imagery -- Acknowledgements -- References -- Chapter 4 Unmanned Aerial Vehicles for Riverine Environments -- Introduction -- Data Collection and Processing Considerations -- Data Collection -- Data Processing -- Riverine Feature Detection and Mapping -- Quantifying Riverine Environments -- References -- Chapter 5 Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Coastal and Marine Applications -- Coastal UAV Applications in the Literature -- Evolution of the Technology -- Monitoring and Mapping Macroalgal Weedmats in the Ythan Estuary, Scotland, UK -- Spey Bay - Monitoring a Dynamic Coastline with a Model Helicopter and Multi-Rotor UAV -- Change Detection and Rates of Erosion on the Norfolk Coastline Using a Multi-Rotor UAV -- Summary and Conclusions -- References -- Chapter 6 Unmanned Aerial System Applications to Coastal Environments -- Introduction -- UAV Models: Fixed-Wing Aircraft, Rotary-Wing Aircraft, and Other Vehicles: Potentialities and Limitations for Coastal Surveys -- Fixed-Wing Aircraft -- Rotary-Wing Aircraft -- Blimps, Balloons, and Kites -- Payloads -- Unmanned Aerial System-Based Multispectral and Visible Surveys of Coastal Environments -- Multispectral Data -- Visible Imaging -- Elevation Models from UAV-SfM (SFM) and Quality Assessment -- Mission Planning -- Applications of Unmanned Aerial Systems to Coastal Environments -- High-Resolution Coastal Topography by Unmanned Aerial System-Based Photogrammetry -- Low Sandy Beach Morphometry -- Cliffs -- Dune Systems -- Monitoring Coastal Dynamics and Geomorphological Processes -- River Mouth, Coastal Wetland, and Intertidal Landscape Dynamics -- Coastal Engineering -- Coastal Vulnerability and Hazard Assessment -- Conclusions -- Acknowledgements -- References Chapter 7 UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Introduction -- Survey Location -- Methodology: Project Planning -- Site Selection and Mapping -- Ground Control Points and GPS Location -- Structure from Motion (SfM [SFM]): Applications -- Survey Application -- Desktop and Cloud-Based Processing -- UAV Technical and Survey -- Ground Truth -- Results -- UAV Flight Overview -- UAV, GNSS, and LiDAR Elevation Errors -- Structure-from-Motion Survey Comparison -- Pix4D Cloud Results -- Pix4Dmapper Results -- Results Conclusion -- Image Resolution and Point Cloud -- Pix4D Cloud -- Pix4Dmapper -- Ground Truth -- Case Study -- Marram Grass Dilemma -- Effects of Wind-Blown Vegetation -- Solution -- Conclusion -- Acknowledgements -- References -- Chapter 8 Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Introduction -- Remote Sensing and Saltmarsh -- UAVs -- Research -- Novel Approach -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 9 Autonomous UAV-Based Insect Monitoring -- Introduction -- Drosophila Suzukii as an Example of an Insect Pest -- Trapping D. Suzukii -- Trapping D. Suzukii - Work in Progress -- Computer Vision to Identify Insects on Traps -- Computer Vision to Identify Insects on Traps - Work in Progress -- UAV-Based Image Acquisition -- UAV Platforms -- Aerial Image Acquisition -- UAV-Based Image Acquisition - Work in Progress -- Manual and Autonomous Flights -- Commercial UAVs -- Sensors and Cameras -- Software -- Platform Selection -- Flight Tests -- Camera Resolution Tests -- Autonomous UAV Flight, Platform, and Camera Positioning -- Further Flight Tests -- Limitations and Constraints -- Flying and Environmental Conditions -- Platform and Camera Positioning -- Transferability and Alternative Image-Based Monitoring Strategies -- Conclusion and Perspective Acknowledgements -- References -- Chapter 10 UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Introduction -- Precision Viticulture -- Small Airborne Platforms and Sensors -- An Example -- Study Area -- The Vineyard -- Study Equipment -- Building a 3D Model of a Vineyard Using Structure from Motion (SfM [SFM]) -- Information Layers -- Topographic Wetness Index (TWI) -- Solar Map -- Image Classification -- Summary and Conclusions -- References -- Chapter 11 Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Introduction -- Precision Forest Inventory -- Study Area -- UAV Imagery and ALS Data -- Area-Based Estimates -- Individual-Tree Estimates -- Conclusion -- Forest Regeneration -- Study Area -- UAV Imagery and Processing -- Classification -- Conclusion -- Forest Health Monitoring -- Study Area and Field Data -- UAV Imagery and Landsat Data -- Stand-Level Defoliation -- Tree-Level Defoliation -- Conclusion -- Invasive Species -- Study Area -- UAV Imagery and WorldView-2 Data -- Mapping of the Invasive Species -- Conclusion -- Final Remarks and Conclusion -- References -- Chapter 12 Monitoring Oil and Gas Pipelines with Small UAV Systems -- Introduction -- Methods for Monitoring Oil and Gas Pipelines -- Detection of Leaks from Hydrocarbon Pipelines -- Emerging Opportunities with UAV Remote Sensing -- Sensors On-Board UAV for Monitoring Oil and Gas Pipelines -- Auxiliary Equipment -- UAV Regulations -- Use of UAVs for Oil and Gas Pipeline Monitoring -- Considerations for Specifications of a UAV System for Monitoring Oil and Gas Pipelines -- Advantages and Limitations of UAVs for Monitoring Pipelines -- Operational Cases -- Oil and Gas Pipelines Monitoring Scenarios -- Scenario 1: Proximity Survey with Visual Identification of Pipe Damage Scenario 2: Short Distance Survey with Visual Identification of Leak |
Beschreibung: | 1 Online-Ressource (xvii, 345 Seiten) Illustrationen, Diagramme, Karten |
ISBN: | 9780429172410 9780429529344 |
DOI: | 10.1201/9780429172410 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047017219 | ||
003 | DE-604 | ||
005 | 20201207 | ||
007 | cr|uuu---uuuuu | ||
008 | 201118s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780429172410 |c Online (T&F) |9 978-0-429-17241-0 | ||
020 | |a 9780429529344 |9 978-0-429-52934-4 | ||
024 | 7 | |a 10.1201/9780429172410 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6260753 | ||
035 | |a (OCoLC)1224013813 | ||
035 | |a (DE-599)BVBBV047017219 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-824 | ||
082 | 0 | |a 363.70630284 | |
245 | 1 | 0 | |a Unmanned aerial remote sensing |b UAS for environmental applications |c edited by David R. Green, Billy J. Gregory, and Alex R. Karachok |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c 2021 | |
300 | |a 1 Online-Ressource (xvii, 345 Seiten) |b Illustrationen, Diagramme, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Editors -- Contributors -- Chapter 1 Introduction -- Context -- The Birth of UAVs -- This Book -- Book Chapters -- Chapter 1 - Introduction -- Chapter 2 - From Radio-Controlled Model Aircraft to Drones -- Chapter 3 - Aquatic Vegetation Monitoring with UAS -- Chapter 4 - Unmanned Aerial Vehicles for Riverine Environments -- Chapter 5 - Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Chapter 6 - Unmanned Aerial System Applications to Coastal Environments -- Chapter 7 - UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Chapter 8 - Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Chapter 9 - Autonomous UAV-Based Insect Monitoring -- Chapter 10 - UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Chapter 11 - Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Chapter 12 - Monitoring Oil and Gas Pipelines with Small UAV Systems -- Chapter 13 - Drone-Based Imaging in Archaeology: Current Applications and Future Prospects -- Chapter 14 - Unmanned Aerial System (UAS) Applications in the Built Environment: Towards Automated Building Inspection Procedures Using Drones -- Chapter 15 - The Application of UAVs to Inform Coastal Area Management -- Chapter 16 - From Land to Sea: Monitoring the Underwater Environment with Drone Technology -- Chapter 17 - A Question of UAS Ground Control: Frequency and Distribution -- Chapter 18 - Launch and Recovery System for Improved Fixed-Wing UAV Deployment in Complex Environments -- Chapter 19 - Epilogue -- Acknowledgements -- References -- Chapter 2 From Radio-Controlled Model Aircraft to Drones -- Introduction -- Small Airborne Platforms | ||
500 | |a Environmental Remote Sensing -- Platform Names -- Types of Platforms -- Fixed-Wing -- Rotary-Wing -- Construction -- Engines -- Operational Considerations -- Positioning -- Flying Regulations -- Photography -- Advantages -- Technological Developments -- Today -- Multi-Rotor UAV -- Fixed-Wing UAV -- Combined Multi-Rotor and Fixed-Wing Platforms -- Sensors -- Passive Sensors -- Multispectral and Near Infrared (NIR) -- Short-Wave Infrared (SWIR) -- Hyperspectral -- Thermal -- Fluorescence -- Active Sensors -- Radar -- LIDAR -- Video and Still Cameras -- Stereo Cameras -- Advances in the Technology -- Platforms -- Multiple Drone Configurations -- Ready to Fly (RTF) -- Batteries -- Autonomous Navigation, GPS, and Collision Avoidance -- Sensors -- Software -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 3 Aquatic Vegetation Monitoring with UAS -- Introduction -- Aquatic Vegetation UAS Field Deployments -- Site Selection and Mission Planning -- UAS Hardware -- Ground Control Points (GCPs) -- Lighting, Cloud, and Wind -- Camera Settings -- Fieldwork for Vegetation Biomass -- Fieldwork for Hydraulic Measurements -- Processing Aquatic Vegetation Imagery Data -- Georeferenced Orthomosaic -- Manual Image Segmentation and Classifications -- Automatic Image Segmentation and Classifications -- Geometric Properties of Individual Plants -- Labwork for Aquatic Vegetation Biometrics -- Sample Health and Handling -- Sample Drying Techniques for Fresh Biomass -- Standardised Centrifugal Drying for Fresh Biomass -- Dry Biomass -- Vegetation Volume and Density Estimation -- Biometrics and Biomechanics -- Aquatic Vegetation at Larger Spatial Scales -- Cover -- Biomass -- Hydraulic Interactions -- Targeted Removal of Aquatic Vegetation -- Emerging Technologies in Aquatic Vegetation Surveying -- Hydraulic Measurements from UAS -- Multispectral Imagery | ||
500 | |a Hyperspectral Imagery -- Acknowledgements -- References -- Chapter 4 Unmanned Aerial Vehicles for Riverine Environments -- Introduction -- Data Collection and Processing Considerations -- Data Collection -- Data Processing -- Riverine Feature Detection and Mapping -- Quantifying Riverine Environments -- References -- Chapter 5 Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Coastal and Marine Applications -- Coastal UAV Applications in the Literature -- Evolution of the Technology -- Monitoring and Mapping Macroalgal Weedmats in the Ythan Estuary, Scotland, UK -- Spey Bay - Monitoring a Dynamic Coastline with a Model Helicopter and Multi-Rotor UAV -- Change Detection and Rates of Erosion on the Norfolk Coastline Using a Multi-Rotor UAV -- Summary and Conclusions -- References -- Chapter 6 Unmanned Aerial System Applications to Coastal Environments -- Introduction -- UAV Models: Fixed-Wing Aircraft, Rotary-Wing Aircraft, and Other Vehicles: Potentialities and Limitations for Coastal Surveys -- Fixed-Wing Aircraft -- Rotary-Wing Aircraft -- Blimps, Balloons, and Kites -- Payloads -- Unmanned Aerial System-Based Multispectral and Visible Surveys of Coastal Environments -- Multispectral Data -- Visible Imaging -- Elevation Models from UAV-SfM (SFM) and Quality Assessment -- Mission Planning -- Applications of Unmanned Aerial Systems to Coastal Environments -- High-Resolution Coastal Topography by Unmanned Aerial System-Based Photogrammetry -- Low Sandy Beach Morphometry -- Cliffs -- Dune Systems -- Monitoring Coastal Dynamics and Geomorphological Processes -- River Mouth, Coastal Wetland, and Intertidal Landscape Dynamics -- Coastal Engineering -- Coastal Vulnerability and Hazard Assessment -- Conclusions -- Acknowledgements -- References | ||
500 | |a Chapter 7 UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Introduction -- Survey Location -- Methodology: Project Planning -- Site Selection and Mapping -- Ground Control Points and GPS Location -- Structure from Motion (SfM [SFM]): Applications -- Survey Application -- Desktop and Cloud-Based Processing -- UAV Technical and Survey -- Ground Truth -- Results -- UAV Flight Overview -- UAV, GNSS, and LiDAR Elevation Errors -- Structure-from-Motion Survey Comparison -- Pix4D Cloud Results -- Pix4Dmapper Results -- Results Conclusion -- Image Resolution and Point Cloud -- Pix4D Cloud -- Pix4Dmapper -- Ground Truth -- Case Study -- Marram Grass Dilemma -- Effects of Wind-Blown Vegetation -- Solution -- Conclusion -- Acknowledgements -- References -- Chapter 8 Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Introduction -- Remote Sensing and Saltmarsh -- UAVs -- Research -- Novel Approach -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 9 Autonomous UAV-Based Insect Monitoring -- Introduction -- Drosophila Suzukii as an Example of an Insect Pest -- Trapping D. Suzukii -- Trapping D. Suzukii - Work in Progress -- Computer Vision to Identify Insects on Traps -- Computer Vision to Identify Insects on Traps - Work in Progress -- UAV-Based Image Acquisition -- UAV Platforms -- Aerial Image Acquisition -- UAV-Based Image Acquisition - Work in Progress -- Manual and Autonomous Flights -- Commercial UAVs -- Sensors and Cameras -- Software -- Platform Selection -- Flight Tests -- Camera Resolution Tests -- Autonomous UAV Flight, Platform, and Camera Positioning -- Further Flight Tests -- Limitations and Constraints -- Flying and Environmental Conditions -- Platform and Camera Positioning -- Transferability and Alternative Image-Based Monitoring Strategies -- Conclusion and Perspective | ||
500 | |a Acknowledgements -- References -- Chapter 10 UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Introduction -- Precision Viticulture -- Small Airborne Platforms and Sensors -- An Example -- Study Area -- The Vineyard -- Study Equipment -- Building a 3D Model of a Vineyard Using Structure from Motion (SfM [SFM]) -- Information Layers -- Topographic Wetness Index (TWI) -- Solar Map -- Image Classification -- Summary and Conclusions -- References -- Chapter 11 Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Introduction -- Precision Forest Inventory -- Study Area -- UAV Imagery and ALS Data -- Area-Based Estimates -- Individual-Tree Estimates -- Conclusion -- Forest Regeneration -- Study Area -- UAV Imagery and Processing -- Classification -- Conclusion -- Forest Health Monitoring -- Study Area and Field Data -- UAV Imagery and Landsat Data -- Stand-Level Defoliation -- Tree-Level Defoliation -- Conclusion -- Invasive Species -- Study Area -- UAV Imagery and WorldView-2 Data -- Mapping of the Invasive Species -- Conclusion -- Final Remarks and Conclusion -- References -- Chapter 12 Monitoring Oil and Gas Pipelines with Small UAV Systems -- Introduction -- Methods for Monitoring Oil and Gas Pipelines -- Detection of Leaks from Hydrocarbon Pipelines -- Emerging Opportunities with UAV Remote Sensing -- Sensors On-Board UAV for Monitoring Oil and Gas Pipelines -- Auxiliary Equipment -- UAV Regulations -- Use of UAVs for Oil and Gas Pipeline Monitoring -- Considerations for Specifications of a UAV System for Monitoring Oil and Gas Pipelines -- Advantages and Limitations of UAVs for Monitoring Pipelines -- Operational Cases -- Oil and Gas Pipelines Monitoring Scenarios -- Scenario 1: Proximity Survey with Visual Identification of Pipe Damage | ||
500 | |a Scenario 2: Short Distance Survey with Visual Identification of Leak | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
700 | 1 | |a Green, David R. |d 1954- |0 (DE-588)143314394 |4 edt | |
700 | 1 | |a Gregory, Billy J. |4 edt | |
700 | 1 | |a Karachok, Alex R. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-4822-4607-0 |
856 | 4 | 0 | |u https://doi.org/10.1201/9780429172410 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-7-TFC |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032424754 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6260753 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1201/9780429172410 |l UEI01 |p ZDB-7-TFC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181979027996673 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Green, David R. 1954- Gregory, Billy J. Karachok, Alex R. |
author2_role | edt edt edt |
author2_variant | d r g dr drg b j g bj bjg a r k ar ark |
author_GND | (DE-588)143314394 |
author_facet | Green, David R. 1954- Gregory, Billy J. Karachok, Alex R. |
building | Verbundindex |
bvnumber | BV047017219 |
collection | ZDB-7-TFC ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC6260753 (OCoLC)1224013813 (DE-599)BVBBV047017219 |
dewey-full | 363.70630284 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 363 - Other social problems and services |
dewey-raw | 363.70630284 |
dewey-search | 363.70630284 |
dewey-sort | 3363.70630284 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Soziologie |
discipline_str_mv | Soziologie |
doi_str_mv | 10.1201/9780429172410 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11188nmm a2200481zc 4500</leader><controlfield tag="001">BV047017219</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201118s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429172410</subfield><subfield code="c">Online (T&F)</subfield><subfield code="9">978-0-429-17241-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429529344</subfield><subfield code="9">978-0-429-52934-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9780429172410</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6260753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224013813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047017219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">363.70630284</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unmanned aerial remote sensing</subfield><subfield code="b">UAS for environmental applications</subfield><subfield code="c">edited by David R. Green, Billy J. Gregory, and Alex R. Karachok</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 345 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Editors -- Contributors -- Chapter 1 Introduction -- Context -- The Birth of UAVs -- This Book -- Book Chapters -- Chapter 1 - Introduction -- Chapter 2 - From Radio-Controlled Model Aircraft to Drones -- Chapter 3 - Aquatic Vegetation Monitoring with UAS -- Chapter 4 - Unmanned Aerial Vehicles for Riverine Environments -- Chapter 5 - Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Chapter 6 - Unmanned Aerial System Applications to Coastal Environments -- Chapter 7 - UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Chapter 8 - Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Chapter 9 - Autonomous UAV-Based Insect Monitoring -- Chapter 10 - UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Chapter 11 - Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Chapter 12 - Monitoring Oil and Gas Pipelines with Small UAV Systems -- Chapter 13 - Drone-Based Imaging in Archaeology: Current Applications and Future Prospects -- Chapter 14 - Unmanned Aerial System (UAS) Applications in the Built Environment: Towards Automated Building Inspection Procedures Using Drones -- Chapter 15 - The Application of UAVs to Inform Coastal Area Management -- Chapter 16 - From Land to Sea: Monitoring the Underwater Environment with Drone Technology -- Chapter 17 - A Question of UAS Ground Control: Frequency and Distribution -- Chapter 18 - Launch and Recovery System for Improved Fixed-Wing UAV Deployment in Complex Environments -- Chapter 19 - Epilogue -- Acknowledgements -- References -- Chapter 2 From Radio-Controlled Model Aircraft to Drones -- Introduction -- Small Airborne Platforms</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Environmental Remote Sensing -- Platform Names -- Types of Platforms -- Fixed-Wing -- Rotary-Wing -- Construction -- Engines -- Operational Considerations -- Positioning -- Flying Regulations -- Photography -- Advantages -- Technological Developments -- Today -- Multi-Rotor UAV -- Fixed-Wing UAV -- Combined Multi-Rotor and Fixed-Wing Platforms -- Sensors -- Passive Sensors -- Multispectral and Near Infrared (NIR) -- Short-Wave Infrared (SWIR) -- Hyperspectral -- Thermal -- Fluorescence -- Active Sensors -- Radar -- LIDAR -- Video and Still Cameras -- Stereo Cameras -- Advances in the Technology -- Platforms -- Multiple Drone Configurations -- Ready to Fly (RTF) -- Batteries -- Autonomous Navigation, GPS, and Collision Avoidance -- Sensors -- Software -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 3 Aquatic Vegetation Monitoring with UAS -- Introduction -- Aquatic Vegetation UAS Field Deployments -- Site Selection and Mission Planning -- UAS Hardware -- Ground Control Points (GCPs) -- Lighting, Cloud, and Wind -- Camera Settings -- Fieldwork for Vegetation Biomass -- Fieldwork for Hydraulic Measurements -- Processing Aquatic Vegetation Imagery Data -- Georeferenced Orthomosaic -- Manual Image Segmentation and Classifications -- Automatic Image Segmentation and Classifications -- Geometric Properties of Individual Plants -- Labwork for Aquatic Vegetation Biometrics -- Sample Health and Handling -- Sample Drying Techniques for Fresh Biomass -- Standardised Centrifugal Drying for Fresh Biomass -- Dry Biomass -- Vegetation Volume and Density Estimation -- Biometrics and Biomechanics -- Aquatic Vegetation at Larger Spatial Scales -- Cover -- Biomass -- Hydraulic Interactions -- Targeted Removal of Aquatic Vegetation -- Emerging Technologies in Aquatic Vegetation Surveying -- Hydraulic Measurements from UAS -- Multispectral Imagery</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hyperspectral Imagery -- Acknowledgements -- References -- Chapter 4 Unmanned Aerial Vehicles for Riverine Environments -- Introduction -- Data Collection and Processing Considerations -- Data Collection -- Data Processing -- Riverine Feature Detection and Mapping -- Quantifying Riverine Environments -- References -- Chapter 5 Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Coastal and Marine Applications -- Coastal UAV Applications in the Literature -- Evolution of the Technology -- Monitoring and Mapping Macroalgal Weedmats in the Ythan Estuary, Scotland, UK -- Spey Bay - Monitoring a Dynamic Coastline with a Model Helicopter and Multi-Rotor UAV -- Change Detection and Rates of Erosion on the Norfolk Coastline Using a Multi-Rotor UAV -- Summary and Conclusions -- References -- Chapter 6 Unmanned Aerial System Applications to Coastal Environments -- Introduction -- UAV Models: Fixed-Wing Aircraft, Rotary-Wing Aircraft, and Other Vehicles: Potentialities and Limitations for Coastal Surveys -- Fixed-Wing Aircraft -- Rotary-Wing Aircraft -- Blimps, Balloons, and Kites -- Payloads -- Unmanned Aerial System-Based Multispectral and Visible Surveys of Coastal Environments -- Multispectral Data -- Visible Imaging -- Elevation Models from UAV-SfM (SFM) and Quality Assessment -- Mission Planning -- Applications of Unmanned Aerial Systems to Coastal Environments -- High-Resolution Coastal Topography by Unmanned Aerial System-Based Photogrammetry -- Low Sandy Beach Morphometry -- Cliffs -- Dune Systems -- Monitoring Coastal Dynamics and Geomorphological Processes -- River Mouth, Coastal Wetland, and Intertidal Landscape Dynamics -- Coastal Engineering -- Coastal Vulnerability and Hazard Assessment -- Conclusions -- Acknowledgements -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 7 UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Introduction -- Survey Location -- Methodology: Project Planning -- Site Selection and Mapping -- Ground Control Points and GPS Location -- Structure from Motion (SfM [SFM]): Applications -- Survey Application -- Desktop and Cloud-Based Processing -- UAV Technical and Survey -- Ground Truth -- Results -- UAV Flight Overview -- UAV, GNSS, and LiDAR Elevation Errors -- Structure-from-Motion Survey Comparison -- Pix4D Cloud Results -- Pix4Dmapper Results -- Results Conclusion -- Image Resolution and Point Cloud -- Pix4D Cloud -- Pix4Dmapper -- Ground Truth -- Case Study -- Marram Grass Dilemma -- Effects of Wind-Blown Vegetation -- Solution -- Conclusion -- Acknowledgements -- References -- Chapter 8 Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Introduction -- Remote Sensing and Saltmarsh -- UAVs -- Research -- Novel Approach -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 9 Autonomous UAV-Based Insect Monitoring -- Introduction -- Drosophila Suzukii as an Example of an Insect Pest -- Trapping D. Suzukii -- Trapping D. Suzukii - Work in Progress -- Computer Vision to Identify Insects on Traps -- Computer Vision to Identify Insects on Traps - Work in Progress -- UAV-Based Image Acquisition -- UAV Platforms -- Aerial Image Acquisition -- UAV-Based Image Acquisition - Work in Progress -- Manual and Autonomous Flights -- Commercial UAVs -- Sensors and Cameras -- Software -- Platform Selection -- Flight Tests -- Camera Resolution Tests -- Autonomous UAV Flight, Platform, and Camera Positioning -- Further Flight Tests -- Limitations and Constraints -- Flying and Environmental Conditions -- Platform and Camera Positioning -- Transferability and Alternative Image-Based Monitoring Strategies -- Conclusion and Perspective</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Acknowledgements -- References -- Chapter 10 UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Introduction -- Precision Viticulture -- Small Airborne Platforms and Sensors -- An Example -- Study Area -- The Vineyard -- Study Equipment -- Building a 3D Model of a Vineyard Using Structure from Motion (SfM [SFM]) -- Information Layers -- Topographic Wetness Index (TWI) -- Solar Map -- Image Classification -- Summary and Conclusions -- References -- Chapter 11 Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Introduction -- Precision Forest Inventory -- Study Area -- UAV Imagery and ALS Data -- Area-Based Estimates -- Individual-Tree Estimates -- Conclusion -- Forest Regeneration -- Study Area -- UAV Imagery and Processing -- Classification -- Conclusion -- Forest Health Monitoring -- Study Area and Field Data -- UAV Imagery and Landsat Data -- Stand-Level Defoliation -- Tree-Level Defoliation -- Conclusion -- Invasive Species -- Study Area -- UAV Imagery and WorldView-2 Data -- Mapping of the Invasive Species -- Conclusion -- Final Remarks and Conclusion -- References -- Chapter 12 Monitoring Oil and Gas Pipelines with Small UAV Systems -- Introduction -- Methods for Monitoring Oil and Gas Pipelines -- Detection of Leaks from Hydrocarbon Pipelines -- Emerging Opportunities with UAV Remote Sensing -- Sensors On-Board UAV for Monitoring Oil and Gas Pipelines -- Auxiliary Equipment -- UAV Regulations -- Use of UAVs for Oil and Gas Pipeline Monitoring -- Considerations for Specifications of a UAV System for Monitoring Oil and Gas Pipelines -- Advantages and Limitations of UAVs for Monitoring Pipelines -- Operational Cases -- Oil and Gas Pipelines Monitoring Scenarios -- Scenario 1: Proximity Survey with Visual Identification of Pipe Damage</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Scenario 2: Short Distance Survey with Visual Identification of Leak</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Green, David R.</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)143314394</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gregory, Billy J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karachok, Alex R.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-4822-4607-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9780429172410</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032424754</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6260753</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9780429172410</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047017219 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:58:20Z |
indexdate | 2024-07-10T09:00:15Z |
institution | BVB |
isbn | 9780429172410 9780429529344 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032424754 |
oclc_num | 1224013813 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-824 |
owner_facet | DE-91 DE-BY-TUM DE-824 |
physical | 1 Online-Ressource (xvii, 345 Seiten) Illustrationen, Diagramme, Karten |
psigel | ZDB-7-TFC ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spelling | Unmanned aerial remote sensing UAS for environmental applications edited by David R. Green, Billy J. Gregory, and Alex R. Karachok First edition Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2021 1 Online-Ressource (xvii, 345 Seiten) Illustrationen, Diagramme, Karten txt rdacontent c rdamedia cr rdacarrier Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Editors -- Contributors -- Chapter 1 Introduction -- Context -- The Birth of UAVs -- This Book -- Book Chapters -- Chapter 1 - Introduction -- Chapter 2 - From Radio-Controlled Model Aircraft to Drones -- Chapter 3 - Aquatic Vegetation Monitoring with UAS -- Chapter 4 - Unmanned Aerial Vehicles for Riverine Environments -- Chapter 5 - Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Chapter 6 - Unmanned Aerial System Applications to Coastal Environments -- Chapter 7 - UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Chapter 8 - Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Chapter 9 - Autonomous UAV-Based Insect Monitoring -- Chapter 10 - UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Chapter 11 - Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Chapter 12 - Monitoring Oil and Gas Pipelines with Small UAV Systems -- Chapter 13 - Drone-Based Imaging in Archaeology: Current Applications and Future Prospects -- Chapter 14 - Unmanned Aerial System (UAS) Applications in the Built Environment: Towards Automated Building Inspection Procedures Using Drones -- Chapter 15 - The Application of UAVs to Inform Coastal Area Management -- Chapter 16 - From Land to Sea: Monitoring the Underwater Environment with Drone Technology -- Chapter 17 - A Question of UAS Ground Control: Frequency and Distribution -- Chapter 18 - Launch and Recovery System for Improved Fixed-Wing UAV Deployment in Complex Environments -- Chapter 19 - Epilogue -- Acknowledgements -- References -- Chapter 2 From Radio-Controlled Model Aircraft to Drones -- Introduction -- Small Airborne Platforms Environmental Remote Sensing -- Platform Names -- Types of Platforms -- Fixed-Wing -- Rotary-Wing -- Construction -- Engines -- Operational Considerations -- Positioning -- Flying Regulations -- Photography -- Advantages -- Technological Developments -- Today -- Multi-Rotor UAV -- Fixed-Wing UAV -- Combined Multi-Rotor and Fixed-Wing Platforms -- Sensors -- Passive Sensors -- Multispectral and Near Infrared (NIR) -- Short-Wave Infrared (SWIR) -- Hyperspectral -- Thermal -- Fluorescence -- Active Sensors -- Radar -- LIDAR -- Video and Still Cameras -- Stereo Cameras -- Advances in the Technology -- Platforms -- Multiple Drone Configurations -- Ready to Fly (RTF) -- Batteries -- Autonomous Navigation, GPS, and Collision Avoidance -- Sensors -- Software -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 3 Aquatic Vegetation Monitoring with UAS -- Introduction -- Aquatic Vegetation UAS Field Deployments -- Site Selection and Mission Planning -- UAS Hardware -- Ground Control Points (GCPs) -- Lighting, Cloud, and Wind -- Camera Settings -- Fieldwork for Vegetation Biomass -- Fieldwork for Hydraulic Measurements -- Processing Aquatic Vegetation Imagery Data -- Georeferenced Orthomosaic -- Manual Image Segmentation and Classifications -- Automatic Image Segmentation and Classifications -- Geometric Properties of Individual Plants -- Labwork for Aquatic Vegetation Biometrics -- Sample Health and Handling -- Sample Drying Techniques for Fresh Biomass -- Standardised Centrifugal Drying for Fresh Biomass -- Dry Biomass -- Vegetation Volume and Density Estimation -- Biometrics and Biomechanics -- Aquatic Vegetation at Larger Spatial Scales -- Cover -- Biomass -- Hydraulic Interactions -- Targeted Removal of Aquatic Vegetation -- Emerging Technologies in Aquatic Vegetation Surveying -- Hydraulic Measurements from UAS -- Multispectral Imagery Hyperspectral Imagery -- Acknowledgements -- References -- Chapter 4 Unmanned Aerial Vehicles for Riverine Environments -- Introduction -- Data Collection and Processing Considerations -- Data Collection -- Data Processing -- Riverine Feature Detection and Mapping -- Quantifying Riverine Environments -- References -- Chapter 5 Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Coastal and Marine Applications -- Coastal UAV Applications in the Literature -- Evolution of the Technology -- Monitoring and Mapping Macroalgal Weedmats in the Ythan Estuary, Scotland, UK -- Spey Bay - Monitoring a Dynamic Coastline with a Model Helicopter and Multi-Rotor UAV -- Change Detection and Rates of Erosion on the Norfolk Coastline Using a Multi-Rotor UAV -- Summary and Conclusions -- References -- Chapter 6 Unmanned Aerial System Applications to Coastal Environments -- Introduction -- UAV Models: Fixed-Wing Aircraft, Rotary-Wing Aircraft, and Other Vehicles: Potentialities and Limitations for Coastal Surveys -- Fixed-Wing Aircraft -- Rotary-Wing Aircraft -- Blimps, Balloons, and Kites -- Payloads -- Unmanned Aerial System-Based Multispectral and Visible Surveys of Coastal Environments -- Multispectral Data -- Visible Imaging -- Elevation Models from UAV-SfM (SFM) and Quality Assessment -- Mission Planning -- Applications of Unmanned Aerial Systems to Coastal Environments -- High-Resolution Coastal Topography by Unmanned Aerial System-Based Photogrammetry -- Low Sandy Beach Morphometry -- Cliffs -- Dune Systems -- Monitoring Coastal Dynamics and Geomorphological Processes -- River Mouth, Coastal Wetland, and Intertidal Landscape Dynamics -- Coastal Engineering -- Coastal Vulnerability and Hazard Assessment -- Conclusions -- Acknowledgements -- References Chapter 7 UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Introduction -- Survey Location -- Methodology: Project Planning -- Site Selection and Mapping -- Ground Control Points and GPS Location -- Structure from Motion (SfM [SFM]): Applications -- Survey Application -- Desktop and Cloud-Based Processing -- UAV Technical and Survey -- Ground Truth -- Results -- UAV Flight Overview -- UAV, GNSS, and LiDAR Elevation Errors -- Structure-from-Motion Survey Comparison -- Pix4D Cloud Results -- Pix4Dmapper Results -- Results Conclusion -- Image Resolution and Point Cloud -- Pix4D Cloud -- Pix4Dmapper -- Ground Truth -- Case Study -- Marram Grass Dilemma -- Effects of Wind-Blown Vegetation -- Solution -- Conclusion -- Acknowledgements -- References -- Chapter 8 Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Introduction -- Remote Sensing and Saltmarsh -- UAVs -- Research -- Novel Approach -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 9 Autonomous UAV-Based Insect Monitoring -- Introduction -- Drosophila Suzukii as an Example of an Insect Pest -- Trapping D. Suzukii -- Trapping D. Suzukii - Work in Progress -- Computer Vision to Identify Insects on Traps -- Computer Vision to Identify Insects on Traps - Work in Progress -- UAV-Based Image Acquisition -- UAV Platforms -- Aerial Image Acquisition -- UAV-Based Image Acquisition - Work in Progress -- Manual and Autonomous Flights -- Commercial UAVs -- Sensors and Cameras -- Software -- Platform Selection -- Flight Tests -- Camera Resolution Tests -- Autonomous UAV Flight, Platform, and Camera Positioning -- Further Flight Tests -- Limitations and Constraints -- Flying and Environmental Conditions -- Platform and Camera Positioning -- Transferability and Alternative Image-Based Monitoring Strategies -- Conclusion and Perspective Acknowledgements -- References -- Chapter 10 UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Introduction -- Precision Viticulture -- Small Airborne Platforms and Sensors -- An Example -- Study Area -- The Vineyard -- Study Equipment -- Building a 3D Model of a Vineyard Using Structure from Motion (SfM [SFM]) -- Information Layers -- Topographic Wetness Index (TWI) -- Solar Map -- Image Classification -- Summary and Conclusions -- References -- Chapter 11 Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Introduction -- Precision Forest Inventory -- Study Area -- UAV Imagery and ALS Data -- Area-Based Estimates -- Individual-Tree Estimates -- Conclusion -- Forest Regeneration -- Study Area -- UAV Imagery and Processing -- Classification -- Conclusion -- Forest Health Monitoring -- Study Area and Field Data -- UAV Imagery and Landsat Data -- Stand-Level Defoliation -- Tree-Level Defoliation -- Conclusion -- Invasive Species -- Study Area -- UAV Imagery and WorldView-2 Data -- Mapping of the Invasive Species -- Conclusion -- Final Remarks and Conclusion -- References -- Chapter 12 Monitoring Oil and Gas Pipelines with Small UAV Systems -- Introduction -- Methods for Monitoring Oil and Gas Pipelines -- Detection of Leaks from Hydrocarbon Pipelines -- Emerging Opportunities with UAV Remote Sensing -- Sensors On-Board UAV for Monitoring Oil and Gas Pipelines -- Auxiliary Equipment -- UAV Regulations -- Use of UAVs for Oil and Gas Pipeline Monitoring -- Considerations for Specifications of a UAV System for Monitoring Oil and Gas Pipelines -- Advantages and Limitations of UAVs for Monitoring Pipelines -- Operational Cases -- Oil and Gas Pipelines Monitoring Scenarios -- Scenario 1: Proximity Survey with Visual Identification of Pipe Damage Scenario 2: Short Distance Survey with Visual Identification of Leak (DE-588)4143413-4 Aufsatzsammlung gnd-content Green, David R. 1954- (DE-588)143314394 edt Gregory, Billy J. edt Karachok, Alex R. edt Erscheint auch als Druck-Ausgabe, Hardcover 978-1-4822-4607-0 https://doi.org/10.1201/9780429172410 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Unmanned aerial remote sensing UAS for environmental applications |
subject_GND | (DE-588)4143413-4 |
title | Unmanned aerial remote sensing UAS for environmental applications |
title_auth | Unmanned aerial remote sensing UAS for environmental applications |
title_exact_search | Unmanned aerial remote sensing UAS for environmental applications |
title_exact_search_txtP | Unmanned aerial remote sensing UAS for environmental applications |
title_full | Unmanned aerial remote sensing UAS for environmental applications edited by David R. Green, Billy J. Gregory, and Alex R. Karachok |
title_fullStr | Unmanned aerial remote sensing UAS for environmental applications edited by David R. Green, Billy J. Gregory, and Alex R. Karachok |
title_full_unstemmed | Unmanned aerial remote sensing UAS for environmental applications edited by David R. Green, Billy J. Gregory, and Alex R. Karachok |
title_short | Unmanned aerial remote sensing |
title_sort | unmanned aerial remote sensing uas for environmental applications |
title_sub | UAS for environmental applications |
topic_facet | Aufsatzsammlung |
url | https://doi.org/10.1201/9780429172410 |
work_keys_str_mv | AT greendavidr unmannedaerialremotesensinguasforenvironmentalapplications AT gregorybillyj unmannedaerialremotesensinguasforenvironmentalapplications AT karachokalexr unmannedaerialremotesensinguasforenvironmentalapplications |