Unmanned aerial remote sensing: UAS for environmental applications
Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Green, David R. 1954- (HerausgeberIn), Gregory, Billy J. (HerausgeberIn), Karachok, Alex R. (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2021
Ausgabe:First edition
Schlagworte:
Online-Zugang:TUM01
UEI01
Volltext
Beschreibung:Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- Editors -- Contributors -- Chapter 1 Introduction -- Context -- The Birth of UAVs -- This Book -- Book Chapters -- Chapter 1 - Introduction -- Chapter 2 - From Radio-Controlled Model Aircraft to Drones -- Chapter 3 - Aquatic Vegetation Monitoring with UAS -- Chapter 4 - Unmanned Aerial Vehicles for Riverine Environments -- Chapter 5 - Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Chapter 6 - Unmanned Aerial System Applications to Coastal Environments -- Chapter 7 - UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Chapter 8 - Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Chapter 9 - Autonomous UAV-Based Insect Monitoring -- Chapter 10 - UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Chapter 11 - Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Chapter 12 - Monitoring Oil and Gas Pipelines with Small UAV Systems -- Chapter 13 - Drone-Based Imaging in Archaeology: Current Applications and Future Prospects -- Chapter 14 - Unmanned Aerial System (UAS) Applications in the Built Environment: Towards Automated Building Inspection Procedures Using Drones -- Chapter 15 - The Application of UAVs to Inform Coastal Area Management -- Chapter 16 - From Land to Sea: Monitoring the Underwater Environment with Drone Technology -- Chapter 17 - A Question of UAS Ground Control: Frequency and Distribution -- Chapter 18 - Launch and Recovery System for Improved Fixed-Wing UAV Deployment in Complex Environments -- Chapter 19 - Epilogue -- Acknowledgements -- References -- Chapter 2 From Radio-Controlled Model Aircraft to Drones -- Introduction -- Small Airborne Platforms
Environmental Remote Sensing -- Platform Names -- Types of Platforms -- Fixed-Wing -- Rotary-Wing -- Construction -- Engines -- Operational Considerations -- Positioning -- Flying Regulations -- Photography -- Advantages -- Technological Developments -- Today -- Multi-Rotor UAV -- Fixed-Wing UAV -- Combined Multi-Rotor and Fixed-Wing Platforms -- Sensors -- Passive Sensors -- Multispectral and Near Infrared (NIR) -- Short-Wave Infrared (SWIR) -- Hyperspectral -- Thermal -- Fluorescence -- Active Sensors -- Radar -- LIDAR -- Video and Still Cameras -- Stereo Cameras -- Advances in the Technology -- Platforms -- Multiple Drone Configurations -- Ready to Fly (RTF) -- Batteries -- Autonomous Navigation, GPS, and Collision Avoidance -- Sensors -- Software -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 3 Aquatic Vegetation Monitoring with UAS -- Introduction -- Aquatic Vegetation UAS Field Deployments -- Site Selection and Mission Planning -- UAS Hardware -- Ground Control Points (GCPs) -- Lighting, Cloud, and Wind -- Camera Settings -- Fieldwork for Vegetation Biomass -- Fieldwork for Hydraulic Measurements -- Processing Aquatic Vegetation Imagery Data -- Georeferenced Orthomosaic -- Manual Image Segmentation and Classifications -- Automatic Image Segmentation and Classifications -- Geometric Properties of Individual Plants -- Labwork for Aquatic Vegetation Biometrics -- Sample Health and Handling -- Sample Drying Techniques for Fresh Biomass -- Standardised Centrifugal Drying for Fresh Biomass -- Dry Biomass -- Vegetation Volume and Density Estimation -- Biometrics and Biomechanics -- Aquatic Vegetation at Larger Spatial Scales -- Cover -- Biomass -- Hydraulic Interactions -- Targeted Removal of Aquatic Vegetation -- Emerging Technologies in Aquatic Vegetation Surveying -- Hydraulic Measurements from UAS -- Multispectral Imagery
Hyperspectral Imagery -- Acknowledgements -- References -- Chapter 4 Unmanned Aerial Vehicles for Riverine Environments -- Introduction -- Data Collection and Processing Considerations -- Data Collection -- Data Processing -- Riverine Feature Detection and Mapping -- Quantifying Riverine Environments -- References -- Chapter 5 Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling of the Coastal Zone -- Coastal and Marine Applications -- Coastal UAV Applications in the Literature -- Evolution of the Technology -- Monitoring and Mapping Macroalgal Weedmats in the Ythan Estuary, Scotland, UK -- Spey Bay - Monitoring a Dynamic Coastline with a Model Helicopter and Multi-Rotor UAV -- Change Detection and Rates of Erosion on the Norfolk Coastline Using a Multi-Rotor UAV -- Summary and Conclusions -- References -- Chapter 6 Unmanned Aerial System Applications to Coastal Environments -- Introduction -- UAV Models: Fixed-Wing Aircraft, Rotary-Wing Aircraft, and Other Vehicles: Potentialities and Limitations for Coastal Surveys -- Fixed-Wing Aircraft -- Rotary-Wing Aircraft -- Blimps, Balloons, and Kites -- Payloads -- Unmanned Aerial System-Based Multispectral and Visible Surveys of Coastal Environments -- Multispectral Data -- Visible Imaging -- Elevation Models from UAV-SfM (SFM) and Quality Assessment -- Mission Planning -- Applications of Unmanned Aerial Systems to Coastal Environments -- High-Resolution Coastal Topography by Unmanned Aerial System-Based Photogrammetry -- Low Sandy Beach Morphometry -- Cliffs -- Dune Systems -- Monitoring Coastal Dynamics and Geomorphological Processes -- River Mouth, Coastal Wetland, and Intertidal Landscape Dynamics -- Coastal Engineering -- Coastal Vulnerability and Hazard Assessment -- Conclusions -- Acknowledgements -- References
Chapter 7 UAV Image Acquisition Using Structure from Motion to Visualise a Coastal Dune System -- Introduction -- Survey Location -- Methodology: Project Planning -- Site Selection and Mapping -- Ground Control Points and GPS Location -- Structure from Motion (SfM [SFM]): Applications -- Survey Application -- Desktop and Cloud-Based Processing -- UAV Technical and Survey -- Ground Truth -- Results -- UAV Flight Overview -- UAV, GNSS, and LiDAR Elevation Errors -- Structure-from-Motion Survey Comparison -- Pix4D Cloud Results -- Pix4Dmapper Results -- Results Conclusion -- Image Resolution and Point Cloud -- Pix4D Cloud -- Pix4Dmapper -- Ground Truth -- Case Study -- Marram Grass Dilemma -- Effects of Wind-Blown Vegetation -- Solution -- Conclusion -- Acknowledgements -- References -- Chapter 8 Monitoring, Mapping, and Modelling Saltmarsh with UAVs -- Introduction -- Remote Sensing and Saltmarsh -- UAVs -- Research -- Novel Approach -- Summary and Conclusions -- Acknowledgements -- References -- Chapter 9 Autonomous UAV-Based Insect Monitoring -- Introduction -- Drosophila Suzukii as an Example of an Insect Pest -- Trapping D. Suzukii -- Trapping D. Suzukii - Work in Progress -- Computer Vision to Identify Insects on Traps -- Computer Vision to Identify Insects on Traps - Work in Progress -- UAV-Based Image Acquisition -- UAV Platforms -- Aerial Image Acquisition -- UAV-Based Image Acquisition - Work in Progress -- Manual and Autonomous Flights -- Commercial UAVs -- Sensors and Cameras -- Software -- Platform Selection -- Flight Tests -- Camera Resolution Tests -- Autonomous UAV Flight, Platform, and Camera Positioning -- Further Flight Tests -- Limitations and Constraints -- Flying and Environmental Conditions -- Platform and Camera Positioning -- Transferability and Alternative Image-Based Monitoring Strategies -- Conclusion and Perspective
Acknowledgements -- References -- Chapter 10 UAV Imagery to Monitor, Map, and Model a Vineyard Canopy to Aid in the Application of Precision Viticulture to Small-Area Vineyards -- Introduction -- Precision Viticulture -- Small Airborne Platforms and Sensors -- An Example -- Study Area -- The Vineyard -- Study Equipment -- Building a 3D Model of a Vineyard Using Structure from Motion (SfM [SFM]) -- Information Layers -- Topographic Wetness Index (TWI) -- Solar Map -- Image Classification -- Summary and Conclusions -- References -- Chapter 11 Forest Ecosystem Monitoring Using Unmanned Aerial Systems -- Introduction -- Precision Forest Inventory -- Study Area -- UAV Imagery and ALS Data -- Area-Based Estimates -- Individual-Tree Estimates -- Conclusion -- Forest Regeneration -- Study Area -- UAV Imagery and Processing -- Classification -- Conclusion -- Forest Health Monitoring -- Study Area and Field Data -- UAV Imagery and Landsat Data -- Stand-Level Defoliation -- Tree-Level Defoliation -- Conclusion -- Invasive Species -- Study Area -- UAV Imagery and WorldView-2 Data -- Mapping of the Invasive Species -- Conclusion -- Final Remarks and Conclusion -- References -- Chapter 12 Monitoring Oil and Gas Pipelines with Small UAV Systems -- Introduction -- Methods for Monitoring Oil and Gas Pipelines -- Detection of Leaks from Hydrocarbon Pipelines -- Emerging Opportunities with UAV Remote Sensing -- Sensors On-Board UAV for Monitoring Oil and Gas Pipelines -- Auxiliary Equipment -- UAV Regulations -- Use of UAVs for Oil and Gas Pipeline Monitoring -- Considerations for Specifications of a UAV System for Monitoring Oil and Gas Pipelines -- Advantages and Limitations of UAVs for Monitoring Pipelines -- Operational Cases -- Oil and Gas Pipelines Monitoring Scenarios -- Scenario 1: Proximity Survey with Visual Identification of Pipe Damage
Scenario 2: Short Distance Survey with Visual Identification of Leak
Beschreibung:1 Online-Ressource (xvii, 345 Seiten) Illustrationen, Diagramme, Karten
ISBN:9780429172410
9780429529344
DOI:10.1201/9780429172410

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen