Metaheuristic computation with MATLAB:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2021
|
Ausgabe: | First edition |
Online-Zugang: | TUM01 |
Beschreibung: | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Authors -- Chapter 1 Introduction and Main Concepts -- 1.1 Introduction -- 1.2 Classical Optimization Methods -- 1.2.1 The Gradient Descent Method -- 1.2.2 Gradient Computation -- 1.2.3 Computational Example in MATLAB -- 1.3 Metaheuristic Methods -- 1.3.1 The Generic Procedure of a Metaheuristic Algorithm -- 1.4 Exploitation and Exploration -- 1.5 Probabilistic Decision and Selection -- 1.5.1 Probabilistic Decision -- 1.5.2 Probabilistic Selection -- 1.6 Random Search -- 1.6.1 Computational Implementation in MATLAB -- 1.7 Simulated Annealing -- 1.7.1 Computational Example in MATLAB -- Exercises -- References -- Chapter 2 Genetic Algorithms (GA) -- 2.1 Introduction -- 2.2 Binary Ga -- 2.2.1 Selection Operator -- 2.2.2 Binary Crossover Operator -- 2.2.3 Binary Mutation -- 2.2.4 Computational Procedure -- 2.3 Ga With Real Parameters -- 2.3.1 Real-Parameter Crossover Operator -- 2.3.2 Real-Parameter Mutation Operator -- 2.3.3 Computational Procedure -- References -- Chapter 3 Evolutionary Strategies (ES) -- 3.1 Introduction -- 3.2 The (1 + 1) ES -- 3.2.1 Initialization -- 3.2.2 Mutation -- 3.2.3 Selection -- 3.3 Computational Procedure of the (1 + 1) ES -- 3.3.1 Description of the Algorithm (1 + 1) ES -- 3.4 Matlab Implementation of Algorithm (1 + 1) ES -- 3.5 ES Variants -- 3.5.1 Adaptive (1 + 1) ES -- 3.5.2 (μ +1) ES -- 3.5.3 (μ + & -- #955 -- ) ES -- 3.5.4 (μ, & -- #955 -- ) ES -- 3.5.5 (μ, α, & -- #955 -- β, ) ES -- 3.5.6 Adaptive (μ + & -- #955 -- ) ES and (μ, & -- #955 -- ) ES -- References -- Chapter 4 Moth-Flame Optimization (MFO) Algorithm -- 4.1 MFO Metaphor -- 4.2 MFO Search Strategy -- 4.2.1 Initialization -- 4.2.2 Cross Orientation -- 4.2.3 Other Mechanisms for the Balance of Exploration-Exploitation 4.2.4 MFO Variants -- 4.3 MFO Computation Procedure -- 4.3.1 Algorithm Description -- 4.4 Implementation of MFO in Matlab -- 4.5 Applications of MFO -- 4.5.1 Application of the MFO to Unconstrained Problems -- 4.5.2 Application of the MFO to Problems with Constrained -- References -- Chapter 5 Differential Evolution (DE) -- 5.1 Introduction -- 5.2 DE Search Strategy -- 5.2.1 Population Structure -- 5.2.2 Initialization -- 5.2.3 Mutation -- 5.2.4 Crossover -- 5.2.5 Selection -- 5.3 Computational Process of DE -- 5.3.1 Implementation of the DE Scheme -- 5.3.2 The General Process of DE -- 5.4 Matlab Implementation of DE -- 5.5 Spring Design Using the DE Algorithm -- References -- Chapter 6 Particle Swarm Optimization (PSO) Algorithm -- 6.1 INTRODUCTION -- 6.2 PSO Search Strategy -- 6.2.1 Initialization -- 6.2.2 Particle Velocity -- 6.2.3 Particle Movement -- 6.2.4 PSO Analysis -- 6.2.5 Inertia Weighting -- 6.3 Computing Procedure of PSO -- 6.3.1 Algorithm Description -- 6.4 Matlab Implementation of the PSO Algorithm -- 6.5 Applications of the PSO Method -- 6.5.1 Application of PSO without Constraints -- 6.5.2 Application of the PSO to Problems with Constraints -- References -- Chapter 7 Artificial Bee Colony (ABC) Algorithm -- 7.1 Introduction -- 7.2 Artificial Bee Colony -- 7.2.1 Initialization of the Population -- 7.2.2 Sending Worker Bees -- 7.2.3 Selecting Food Sources by Onlooker Bees -- 7.2.4 Determining the Exploring Bees -- 7.2.5 Computational Process ABC -- 7.2.6 Computational Example in MATLAB -- 7.3 Recent Applications of the ABC Algorithm in Image Processing -- 7.3.1 Applications in the Area of Image Processing -- 7.3.1.1 Image Enhancement -- 7.3.1.2 Image Compression -- 7.3.1.3 Border Detection -- 7.3.1.4 Clustering -- 7.3.1.5 Image Classification -- 7.3.1.6 Fusion in Images -- 7.3.1.7 Scene Analysis -- 7.3.1.8 Pattern Recognition 7.3.1.9 Object Detection -- References -- Chapter 8 Cuckoo Search (CS) Algorithm -- 8.1 Introduction -- 8.2 CS Strategy -- 8.2.1 Lévy Flight (A) -- 8.2.2 Replace Some Nests by Constructing New Solutions (B) -- 8.2.3 Elitist Selection Strategy (C) -- 8.2.4 Complete CS Algorithm -- 8.3 CS Computational Procedure -- 8.4 The Multimodal Cuckoo Search (MCS) -- 8.4.1 Memory Mechanism (D) -- 8.4.1.1 Initialization Phase -- 8.4.1.2 Capture Phase -- 8.4.1.3 Significant Fitness Value Rule -- 8.4.1.4 Non-Significant Fitness Value Rule -- 8.4.2 New Selection Strategy (E) -- 8.4.3 Depuration Procedure (F) -- 8.4.4 Complete MCS Algorithm -- 8.5 Analysis of CS -- 8.5.1 Experimental Methodology -- 8.5.2 Comparing MCS Performance for Functions f[sub(1)]f[sub(7)] -- 8.5.3 Comparing MCS Performance for Functions f[sub(8)]f[sub(14)] -- References -- Chapter 9 Metaheuristic Multimodal Optimization -- 9.1 Introduction -- 9.2 Diversity Through Mutation -- 9.3 Preselection -- 9.4 Crowding Model -- 9.5 Sharing Function Model -- 9.5.1 Numerical Example for Sharing Function Calculation -- 9.5.2 Computational Example in MATLAB -- 9.5.3 Genetic Algorithm without Multimodal Capacities -- 9.5.4 Genetic Algorithm with Multimodal Capacities -- 9.6 Firefly Algorithm -- 9.6.1 Computational Example in MATLAB -- Exercises -- References -- Index |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781000096514 9781003006312 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047017211 | ||
003 | DE-604 | ||
005 | 20230816 | ||
007 | cr|uuu---uuuuu | ||
008 | 201118s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781000096514 |9 978-1-00-009651-4 | ||
020 | |a 9781003006312 |9 978-1-003-00631-2 | ||
035 | |a (ZDB-30-PQE)EBC6259567 | ||
035 | |a (OCoLC)1224017158 | ||
035 | |a (DE-599)BVBBV047017211 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 519.6 | |
084 | |a DAT 306 |2 stub | ||
100 | 1 | |a Cuevas, Erik Valdemar |e Verfasser |0 (DE-588)1074407687 |4 aut | |
245 | 1 | 0 | |a Metaheuristic computation with MATLAB |c Erik Cuevas, Alma Rodríguez |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2021 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Authors -- Chapter 1 Introduction and Main Concepts -- 1.1 Introduction -- 1.2 Classical Optimization Methods -- 1.2.1 The Gradient Descent Method -- 1.2.2 Gradient Computation -- 1.2.3 Computational Example in MATLAB -- 1.3 Metaheuristic Methods -- 1.3.1 The Generic Procedure of a Metaheuristic Algorithm -- 1.4 Exploitation and Exploration -- 1.5 Probabilistic Decision and Selection -- 1.5.1 Probabilistic Decision -- 1.5.2 Probabilistic Selection -- 1.6 Random Search -- 1.6.1 Computational Implementation in MATLAB -- 1.7 Simulated Annealing -- 1.7.1 Computational Example in MATLAB -- Exercises -- References -- Chapter 2 Genetic Algorithms (GA) -- 2.1 Introduction -- 2.2 Binary Ga -- 2.2.1 Selection Operator -- 2.2.2 Binary Crossover Operator -- 2.2.3 Binary Mutation -- 2.2.4 Computational Procedure -- 2.3 Ga With Real Parameters -- 2.3.1 Real-Parameter Crossover Operator -- 2.3.2 Real-Parameter Mutation Operator -- 2.3.3 Computational Procedure -- References -- Chapter 3 Evolutionary Strategies (ES) -- 3.1 Introduction -- 3.2 The (1 + 1) ES -- 3.2.1 Initialization -- 3.2.2 Mutation -- 3.2.3 Selection -- 3.3 Computational Procedure of the (1 + 1) ES -- 3.3.1 Description of the Algorithm (1 + 1) ES -- 3.4 Matlab Implementation of Algorithm (1 + 1) ES -- 3.5 ES Variants -- 3.5.1 Adaptive (1 + 1) ES -- 3.5.2 (μ +1) ES -- 3.5.3 (μ + & -- #955 -- ) ES -- 3.5.4 (μ, & -- #955 -- ) ES -- 3.5.5 (μ, α, & -- #955 -- β, ) ES -- 3.5.6 Adaptive (μ + & -- #955 -- ) ES and (μ, & -- #955 -- ) ES -- References -- Chapter 4 Moth-Flame Optimization (MFO) Algorithm -- 4.1 MFO Metaphor -- 4.2 MFO Search Strategy -- 4.2.1 Initialization -- 4.2.2 Cross Orientation -- 4.2.3 Other Mechanisms for the Balance of Exploration-Exploitation | ||
500 | |a 4.2.4 MFO Variants -- 4.3 MFO Computation Procedure -- 4.3.1 Algorithm Description -- 4.4 Implementation of MFO in Matlab -- 4.5 Applications of MFO -- 4.5.1 Application of the MFO to Unconstrained Problems -- 4.5.2 Application of the MFO to Problems with Constrained -- References -- Chapter 5 Differential Evolution (DE) -- 5.1 Introduction -- 5.2 DE Search Strategy -- 5.2.1 Population Structure -- 5.2.2 Initialization -- 5.2.3 Mutation -- 5.2.4 Crossover -- 5.2.5 Selection -- 5.3 Computational Process of DE -- 5.3.1 Implementation of the DE Scheme -- 5.3.2 The General Process of DE -- 5.4 Matlab Implementation of DE -- 5.5 Spring Design Using the DE Algorithm -- References -- Chapter 6 Particle Swarm Optimization (PSO) Algorithm -- 6.1 INTRODUCTION -- 6.2 PSO Search Strategy -- 6.2.1 Initialization -- 6.2.2 Particle Velocity -- 6.2.3 Particle Movement -- 6.2.4 PSO Analysis -- 6.2.5 Inertia Weighting -- 6.3 Computing Procedure of PSO -- 6.3.1 Algorithm Description -- 6.4 Matlab Implementation of the PSO Algorithm -- 6.5 Applications of the PSO Method -- 6.5.1 Application of PSO without Constraints -- 6.5.2 Application of the PSO to Problems with Constraints -- References -- Chapter 7 Artificial Bee Colony (ABC) Algorithm -- 7.1 Introduction -- 7.2 Artificial Bee Colony -- 7.2.1 Initialization of the Population -- 7.2.2 Sending Worker Bees -- 7.2.3 Selecting Food Sources by Onlooker Bees -- 7.2.4 Determining the Exploring Bees -- 7.2.5 Computational Process ABC -- 7.2.6 Computational Example in MATLAB -- 7.3 Recent Applications of the ABC Algorithm in Image Processing -- 7.3.1 Applications in the Area of Image Processing -- 7.3.1.1 Image Enhancement -- 7.3.1.2 Image Compression -- 7.3.1.3 Border Detection -- 7.3.1.4 Clustering -- 7.3.1.5 Image Classification -- 7.3.1.6 Fusion in Images -- 7.3.1.7 Scene Analysis -- 7.3.1.8 Pattern Recognition | ||
500 | |a 7.3.1.9 Object Detection -- References -- Chapter 8 Cuckoo Search (CS) Algorithm -- 8.1 Introduction -- 8.2 CS Strategy -- 8.2.1 Lévy Flight (A) -- 8.2.2 Replace Some Nests by Constructing New Solutions (B) -- 8.2.3 Elitist Selection Strategy (C) -- 8.2.4 Complete CS Algorithm -- 8.3 CS Computational Procedure -- 8.4 The Multimodal Cuckoo Search (MCS) -- 8.4.1 Memory Mechanism (D) -- 8.4.1.1 Initialization Phase -- 8.4.1.2 Capture Phase -- 8.4.1.3 Significant Fitness Value Rule -- 8.4.1.4 Non-Significant Fitness Value Rule -- 8.4.2 New Selection Strategy (E) -- 8.4.3 Depuration Procedure (F) -- 8.4.4 Complete MCS Algorithm -- 8.5 Analysis of CS -- 8.5.1 Experimental Methodology -- 8.5.2 Comparing MCS Performance for Functions f[sub(1)]f[sub(7)] -- 8.5.3 Comparing MCS Performance for Functions f[sub(8)]f[sub(14)] -- References -- Chapter 9 Metaheuristic Multimodal Optimization -- 9.1 Introduction -- 9.2 Diversity Through Mutation -- 9.3 Preselection -- 9.4 Crowding Model -- 9.5 Sharing Function Model -- 9.5.1 Numerical Example for Sharing Function Calculation -- 9.5.2 Computational Example in MATLAB -- 9.5.3 Genetic Algorithm without Multimodal Capacities -- 9.5.4 Genetic Algorithm with Multimodal Capacities -- 9.6 Firefly Algorithm -- 9.6.1 Computational Example in MATLAB -- Exercises -- References -- Index | ||
700 | 1 | |a Rodríguez, Alma |e Verfasser |0 (DE-588)1225413265 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-367-43886-9 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032424746 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6259567 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181979000733696 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Cuevas, Erik Valdemar Rodríguez, Alma |
author_GND | (DE-588)1074407687 (DE-588)1225413265 |
author_facet | Cuevas, Erik Valdemar Rodríguez, Alma |
author_role | aut aut |
author_sort | Cuevas, Erik Valdemar |
author_variant | e v c ev evc a r ar |
building | Verbundindex |
bvnumber | BV047017211 |
classification_tum | DAT 306 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC6259567 (OCoLC)1224017158 (DE-599)BVBBV047017211 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06385nmm a2200397zc 4500</leader><controlfield tag="001">BV047017211</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230816 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201118s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000096514</subfield><subfield code="9">978-1-00-009651-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003006312</subfield><subfield code="9">978-1-003-00631-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6259567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224017158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047017211</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 306</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cuevas, Erik Valdemar</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1074407687</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metaheuristic computation with MATLAB</subfield><subfield code="c">Erik Cuevas, Alma Rodríguez</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Authors -- Chapter 1 Introduction and Main Concepts -- 1.1 Introduction -- 1.2 Classical Optimization Methods -- 1.2.1 The Gradient Descent Method -- 1.2.2 Gradient Computation -- 1.2.3 Computational Example in MATLAB -- 1.3 Metaheuristic Methods -- 1.3.1 The Generic Procedure of a Metaheuristic Algorithm -- 1.4 Exploitation and Exploration -- 1.5 Probabilistic Decision and Selection -- 1.5.1 Probabilistic Decision -- 1.5.2 Probabilistic Selection -- 1.6 Random Search -- 1.6.1 Computational Implementation in MATLAB -- 1.7 Simulated Annealing -- 1.7.1 Computational Example in MATLAB -- Exercises -- References -- Chapter 2 Genetic Algorithms (GA) -- 2.1 Introduction -- 2.2 Binary Ga -- 2.2.1 Selection Operator -- 2.2.2 Binary Crossover Operator -- 2.2.3 Binary Mutation -- 2.2.4 Computational Procedure -- 2.3 Ga With Real Parameters -- 2.3.1 Real-Parameter Crossover Operator -- 2.3.2 Real-Parameter Mutation Operator -- 2.3.3 Computational Procedure -- References -- Chapter 3 Evolutionary Strategies (ES) -- 3.1 Introduction -- 3.2 The (1 + 1) ES -- 3.2.1 Initialization -- 3.2.2 Mutation -- 3.2.3 Selection -- 3.3 Computational Procedure of the (1 + 1) ES -- 3.3.1 Description of the Algorithm (1 + 1) ES -- 3.4 Matlab Implementation of Algorithm (1 + 1) ES -- 3.5 ES Variants -- 3.5.1 Adaptive (1 + 1) ES -- 3.5.2 (μ +1) ES -- 3.5.3 (μ + &amp -- #955 -- ) ES -- 3.5.4 (μ, &amp -- #955 -- ) ES -- 3.5.5 (μ, α, &amp -- #955 -- β, ) ES -- 3.5.6 Adaptive (μ + &amp -- #955 -- ) ES and (μ, &amp -- #955 -- ) ES -- References -- Chapter 4 Moth-Flame Optimization (MFO) Algorithm -- 4.1 MFO Metaphor -- 4.2 MFO Search Strategy -- 4.2.1 Initialization -- 4.2.2 Cross Orientation -- 4.2.3 Other Mechanisms for the Balance of Exploration-Exploitation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.2.4 MFO Variants -- 4.3 MFO Computation Procedure -- 4.3.1 Algorithm Description -- 4.4 Implementation of MFO in Matlab -- 4.5 Applications of MFO -- 4.5.1 Application of the MFO to Unconstrained Problems -- 4.5.2 Application of the MFO to Problems with Constrained -- References -- Chapter 5 Differential Evolution (DE) -- 5.1 Introduction -- 5.2 DE Search Strategy -- 5.2.1 Population Structure -- 5.2.2 Initialization -- 5.2.3 Mutation -- 5.2.4 Crossover -- 5.2.5 Selection -- 5.3 Computational Process of DE -- 5.3.1 Implementation of the DE Scheme -- 5.3.2 The General Process of DE -- 5.4 Matlab Implementation of DE -- 5.5 Spring Design Using the DE Algorithm -- References -- Chapter 6 Particle Swarm Optimization (PSO) Algorithm -- 6.1 INTRODUCTION -- 6.2 PSO Search Strategy -- 6.2.1 Initialization -- 6.2.2 Particle Velocity -- 6.2.3 Particle Movement -- 6.2.4 PSO Analysis -- 6.2.5 Inertia Weighting -- 6.3 Computing Procedure of PSO -- 6.3.1 Algorithm Description -- 6.4 Matlab Implementation of the PSO Algorithm -- 6.5 Applications of the PSO Method -- 6.5.1 Application of PSO without Constraints -- 6.5.2 Application of the PSO to Problems with Constraints -- References -- Chapter 7 Artificial Bee Colony (ABC) Algorithm -- 7.1 Introduction -- 7.2 Artificial Bee Colony -- 7.2.1 Initialization of the Population -- 7.2.2 Sending Worker Bees -- 7.2.3 Selecting Food Sources by Onlooker Bees -- 7.2.4 Determining the Exploring Bees -- 7.2.5 Computational Process ABC -- 7.2.6 Computational Example in MATLAB -- 7.3 Recent Applications of the ABC Algorithm in Image Processing -- 7.3.1 Applications in the Area of Image Processing -- 7.3.1.1 Image Enhancement -- 7.3.1.2 Image Compression -- 7.3.1.3 Border Detection -- 7.3.1.4 Clustering -- 7.3.1.5 Image Classification -- 7.3.1.6 Fusion in Images -- 7.3.1.7 Scene Analysis -- 7.3.1.8 Pattern Recognition</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.3.1.9 Object Detection -- References -- Chapter 8 Cuckoo Search (CS) Algorithm -- 8.1 Introduction -- 8.2 CS Strategy -- 8.2.1 Lévy Flight (A) -- 8.2.2 Replace Some Nests by Constructing New Solutions (B) -- 8.2.3 Elitist Selection Strategy (C) -- 8.2.4 Complete CS Algorithm -- 8.3 CS Computational Procedure -- 8.4 The Multimodal Cuckoo Search (MCS) -- 8.4.1 Memory Mechanism (D) -- 8.4.1.1 Initialization Phase -- 8.4.1.2 Capture Phase -- 8.4.1.3 Significant Fitness Value Rule -- 8.4.1.4 Non-Significant Fitness Value Rule -- 8.4.2 New Selection Strategy (E) -- 8.4.3 Depuration Procedure (F) -- 8.4.4 Complete MCS Algorithm -- 8.5 Analysis of CS -- 8.5.1 Experimental Methodology -- 8.5.2 Comparing MCS Performance for Functions f[sub(1)]f[sub(7)] -- 8.5.3 Comparing MCS Performance for Functions f[sub(8)]f[sub(14)] -- References -- Chapter 9 Metaheuristic Multimodal Optimization -- 9.1 Introduction -- 9.2 Diversity Through Mutation -- 9.3 Preselection -- 9.4 Crowding Model -- 9.5 Sharing Function Model -- 9.5.1 Numerical Example for Sharing Function Calculation -- 9.5.2 Computational Example in MATLAB -- 9.5.3 Genetic Algorithm without Multimodal Capacities -- 9.5.4 Genetic Algorithm with Multimodal Capacities -- 9.6 Firefly Algorithm -- 9.6.1 Computational Example in MATLAB -- Exercises -- References -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodríguez, Alma</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1225413265</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-367-43886-9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032424746</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6259567</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047017211 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:58:20Z |
indexdate | 2024-07-10T09:00:15Z |
institution | BVB |
isbn | 9781000096514 9781003006312 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032424746 |
oclc_num | 1224017158 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
spelling | Cuevas, Erik Valdemar Verfasser (DE-588)1074407687 aut Metaheuristic computation with MATLAB Erik Cuevas, Alma Rodríguez First edition Boca Raton ; London ; New York CRC Press 2021 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Authors -- Chapter 1 Introduction and Main Concepts -- 1.1 Introduction -- 1.2 Classical Optimization Methods -- 1.2.1 The Gradient Descent Method -- 1.2.2 Gradient Computation -- 1.2.3 Computational Example in MATLAB -- 1.3 Metaheuristic Methods -- 1.3.1 The Generic Procedure of a Metaheuristic Algorithm -- 1.4 Exploitation and Exploration -- 1.5 Probabilistic Decision and Selection -- 1.5.1 Probabilistic Decision -- 1.5.2 Probabilistic Selection -- 1.6 Random Search -- 1.6.1 Computational Implementation in MATLAB -- 1.7 Simulated Annealing -- 1.7.1 Computational Example in MATLAB -- Exercises -- References -- Chapter 2 Genetic Algorithms (GA) -- 2.1 Introduction -- 2.2 Binary Ga -- 2.2.1 Selection Operator -- 2.2.2 Binary Crossover Operator -- 2.2.3 Binary Mutation -- 2.2.4 Computational Procedure -- 2.3 Ga With Real Parameters -- 2.3.1 Real-Parameter Crossover Operator -- 2.3.2 Real-Parameter Mutation Operator -- 2.3.3 Computational Procedure -- References -- Chapter 3 Evolutionary Strategies (ES) -- 3.1 Introduction -- 3.2 The (1 + 1) ES -- 3.2.1 Initialization -- 3.2.2 Mutation -- 3.2.3 Selection -- 3.3 Computational Procedure of the (1 + 1) ES -- 3.3.1 Description of the Algorithm (1 + 1) ES -- 3.4 Matlab Implementation of Algorithm (1 + 1) ES -- 3.5 ES Variants -- 3.5.1 Adaptive (1 + 1) ES -- 3.5.2 (μ +1) ES -- 3.5.3 (μ + & -- #955 -- ) ES -- 3.5.4 (μ, & -- #955 -- ) ES -- 3.5.5 (μ, α, & -- #955 -- β, ) ES -- 3.5.6 Adaptive (μ + & -- #955 -- ) ES and (μ, & -- #955 -- ) ES -- References -- Chapter 4 Moth-Flame Optimization (MFO) Algorithm -- 4.1 MFO Metaphor -- 4.2 MFO Search Strategy -- 4.2.1 Initialization -- 4.2.2 Cross Orientation -- 4.2.3 Other Mechanisms for the Balance of Exploration-Exploitation 4.2.4 MFO Variants -- 4.3 MFO Computation Procedure -- 4.3.1 Algorithm Description -- 4.4 Implementation of MFO in Matlab -- 4.5 Applications of MFO -- 4.5.1 Application of the MFO to Unconstrained Problems -- 4.5.2 Application of the MFO to Problems with Constrained -- References -- Chapter 5 Differential Evolution (DE) -- 5.1 Introduction -- 5.2 DE Search Strategy -- 5.2.1 Population Structure -- 5.2.2 Initialization -- 5.2.3 Mutation -- 5.2.4 Crossover -- 5.2.5 Selection -- 5.3 Computational Process of DE -- 5.3.1 Implementation of the DE Scheme -- 5.3.2 The General Process of DE -- 5.4 Matlab Implementation of DE -- 5.5 Spring Design Using the DE Algorithm -- References -- Chapter 6 Particle Swarm Optimization (PSO) Algorithm -- 6.1 INTRODUCTION -- 6.2 PSO Search Strategy -- 6.2.1 Initialization -- 6.2.2 Particle Velocity -- 6.2.3 Particle Movement -- 6.2.4 PSO Analysis -- 6.2.5 Inertia Weighting -- 6.3 Computing Procedure of PSO -- 6.3.1 Algorithm Description -- 6.4 Matlab Implementation of the PSO Algorithm -- 6.5 Applications of the PSO Method -- 6.5.1 Application of PSO without Constraints -- 6.5.2 Application of the PSO to Problems with Constraints -- References -- Chapter 7 Artificial Bee Colony (ABC) Algorithm -- 7.1 Introduction -- 7.2 Artificial Bee Colony -- 7.2.1 Initialization of the Population -- 7.2.2 Sending Worker Bees -- 7.2.3 Selecting Food Sources by Onlooker Bees -- 7.2.4 Determining the Exploring Bees -- 7.2.5 Computational Process ABC -- 7.2.6 Computational Example in MATLAB -- 7.3 Recent Applications of the ABC Algorithm in Image Processing -- 7.3.1 Applications in the Area of Image Processing -- 7.3.1.1 Image Enhancement -- 7.3.1.2 Image Compression -- 7.3.1.3 Border Detection -- 7.3.1.4 Clustering -- 7.3.1.5 Image Classification -- 7.3.1.6 Fusion in Images -- 7.3.1.7 Scene Analysis -- 7.3.1.8 Pattern Recognition 7.3.1.9 Object Detection -- References -- Chapter 8 Cuckoo Search (CS) Algorithm -- 8.1 Introduction -- 8.2 CS Strategy -- 8.2.1 Lévy Flight (A) -- 8.2.2 Replace Some Nests by Constructing New Solutions (B) -- 8.2.3 Elitist Selection Strategy (C) -- 8.2.4 Complete CS Algorithm -- 8.3 CS Computational Procedure -- 8.4 The Multimodal Cuckoo Search (MCS) -- 8.4.1 Memory Mechanism (D) -- 8.4.1.1 Initialization Phase -- 8.4.1.2 Capture Phase -- 8.4.1.3 Significant Fitness Value Rule -- 8.4.1.4 Non-Significant Fitness Value Rule -- 8.4.2 New Selection Strategy (E) -- 8.4.3 Depuration Procedure (F) -- 8.4.4 Complete MCS Algorithm -- 8.5 Analysis of CS -- 8.5.1 Experimental Methodology -- 8.5.2 Comparing MCS Performance for Functions f[sub(1)]f[sub(7)] -- 8.5.3 Comparing MCS Performance for Functions f[sub(8)]f[sub(14)] -- References -- Chapter 9 Metaheuristic Multimodal Optimization -- 9.1 Introduction -- 9.2 Diversity Through Mutation -- 9.3 Preselection -- 9.4 Crowding Model -- 9.5 Sharing Function Model -- 9.5.1 Numerical Example for Sharing Function Calculation -- 9.5.2 Computational Example in MATLAB -- 9.5.3 Genetic Algorithm without Multimodal Capacities -- 9.5.4 Genetic Algorithm with Multimodal Capacities -- 9.6 Firefly Algorithm -- 9.6.1 Computational Example in MATLAB -- Exercises -- References -- Index Rodríguez, Alma Verfasser (DE-588)1225413265 aut Erscheint auch als Druck-Ausgabe 978-0-367-43886-9 |
spellingShingle | Cuevas, Erik Valdemar Rodríguez, Alma Metaheuristic computation with MATLAB |
title | Metaheuristic computation with MATLAB |
title_auth | Metaheuristic computation with MATLAB |
title_exact_search | Metaheuristic computation with MATLAB |
title_exact_search_txtP | Metaheuristic computation with MATLAB |
title_full | Metaheuristic computation with MATLAB Erik Cuevas, Alma Rodríguez |
title_fullStr | Metaheuristic computation with MATLAB Erik Cuevas, Alma Rodríguez |
title_full_unstemmed | Metaheuristic computation with MATLAB Erik Cuevas, Alma Rodríguez |
title_short | Metaheuristic computation with MATLAB |
title_sort | metaheuristic computation with matlab |
work_keys_str_mv | AT cuevaserikvaldemar metaheuristiccomputationwithmatlab AT rodriguezalma metaheuristiccomputationwithmatlab |