Using R for item response theory model applications:
Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applie...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Abingdon, Oxon
Routledge
2020
|
Schlagworte: | |
Online-Zugang: | UBA01 |
Zusammenfassung: | Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applied researchers who want to learn how to properly use R IRT packages to perform IRT model calibrations with their own data. This book provides practical line-by-line descriptions of how to use R IRT packages for various IRT models. The scope and coverage of the modeling in the book covers almost all models used in practice and in popular research, including: dichotomous response modeling polytomous response modeling mixed format data modeling concurrent multiple group modeling fixed item parameter calibration modelling with latent regression to include person-level covariate(s) simple structure, or between-item, multidimensional modeling cross-loading, or within-item, multidimensional modeling high-dimensional modeling bifactor modeling testlet modeling two-tier modeling For beginners, this book provides a straightforward guide to learn how to use R for IRT applications. For more intermediate learners of IRT or users of R, this book will serve as a great time-saving tool for learning how to create the proper syntax, fit the various models, evaluate the models, and interpret the output using popular R IRT packages |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (viii, 271 pages) Illustrationen |
ISBN: | 9781351008167 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047014264 | ||
003 | DE-604 | ||
005 | 20230411 | ||
007 | cr|uuu---uuuuu | ||
008 | 201118s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781351008167 |9 978-1-351-00816-7 | ||
035 | |a (ZDB-7-TFC)9781351008150 | ||
035 | |a (OCoLC)1261782230 | ||
035 | |a (DE-599)BVBBV047014264 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 | ||
082 | 0 | |a 150.28/7 |2 23 | |
100 | 1 | |a Paek, Insu |e Verfasser |0 (DE-588)1197652590 |4 aut | |
245 | 1 | 0 | |a Using R for item response theory model applications |c Insu Paek and Ki Cole |
264 | 1 | |a Abingdon, Oxon |b Routledge |c 2020 | |
264 | 4 | |c © 2020 | |
300 | |a 1 online resource (viii, 271 pages) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
520 | |a Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applied researchers who want to learn how to properly use R IRT packages to perform IRT model calibrations with their own data. This book provides practical line-by-line descriptions of how to use R IRT packages for various IRT models. The scope and coverage of the modeling in the book covers almost all models used in practice and in popular research, including: dichotomous response modeling polytomous response modeling mixed format data modeling concurrent multiple group modeling fixed item parameter calibration modelling with latent regression to include person-level covariate(s) simple structure, or between-item, multidimensional modeling cross-loading, or within-item, multidimensional modeling high-dimensional modeling bifactor modeling testlet modeling two-tier modeling For beginners, this book provides a straightforward guide to learn how to use R for IRT applications. For more intermediate learners of IRT or users of R, this book will serve as a great time-saving tool for learning how to create the proper syntax, fit the various models, evaluate the models, and interpret the output using popular R IRT packages | ||
650 | 4 | |a Item response theory | |
650 | 4 | |a R (Computer program language) | |
700 | 1 | |a Cole, Ki |0 (DE-588)1197652744 |4 aut | |
912 | |a ZDB-7-TFC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032421801 | ||
966 | e | |u https://doi.org/10.4324/9781351008167 |l UBA01 |p ZDB-7-CSC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181973536604160 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Paek, Insu Cole, Ki |
author_GND | (DE-588)1197652590 (DE-588)1197652744 |
author_facet | Paek, Insu Cole, Ki |
author_role | aut aut |
author_sort | Paek, Insu |
author_variant | i p ip k c kc |
building | Verbundindex |
bvnumber | BV047014264 |
collection | ZDB-7-TFC |
ctrlnum | (ZDB-7-TFC)9781351008150 (OCoLC)1261782230 (DE-599)BVBBV047014264 |
dewey-full | 150.28/7 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 150 - Psychology |
dewey-raw | 150.28/7 |
dewey-search | 150.28/7 |
dewey-sort | 3150.28 17 |
dewey-tens | 150 - Psychology |
discipline | Psychologie |
discipline_str_mv | Psychologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02636nmm a2200373zc 4500</leader><controlfield tag="001">BV047014264</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230411 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201118s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781351008167</subfield><subfield code="9">978-1-351-00816-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-7-TFC)9781351008150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1261782230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047014264</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">150.28/7</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paek, Insu</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1197652590</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using R for item response theory model applications</subfield><subfield code="c">Insu Paek and Ki Cole</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Abingdon, Oxon</subfield><subfield code="b">Routledge</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 271 pages)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applied researchers who want to learn how to properly use R IRT packages to perform IRT model calibrations with their own data. This book provides practical line-by-line descriptions of how to use R IRT packages for various IRT models. The scope and coverage of the modeling in the book covers almost all models used in practice and in popular research, including: dichotomous response modeling polytomous response modeling mixed format data modeling concurrent multiple group modeling fixed item parameter calibration modelling with latent regression to include person-level covariate(s) simple structure, or between-item, multidimensional modeling cross-loading, or within-item, multidimensional modeling high-dimensional modeling bifactor modeling testlet modeling two-tier modeling For beginners, this book provides a straightforward guide to learn how to use R for IRT applications. For more intermediate learners of IRT or users of R, this book will serve as a great time-saving tool for learning how to create the proper syntax, fit the various models, evaluate the models, and interpret the output using popular R IRT packages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Item response theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cole, Ki</subfield><subfield code="0">(DE-588)1197652744</subfield><subfield code="4">aut</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032421801</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4324/9781351008167</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-7-CSC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047014264 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:58:14Z |
indexdate | 2024-07-10T09:00:10Z |
institution | BVB |
isbn | 9781351008167 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032421801 |
oclc_num | 1261782230 |
open_access_boolean | |
owner | DE-384 |
owner_facet | DE-384 |
physical | 1 online resource (viii, 271 pages) Illustrationen |
psigel | ZDB-7-TFC ZDB-7-CSC |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Routledge |
record_format | marc |
spelling | Paek, Insu Verfasser (DE-588)1197652590 aut Using R for item response theory model applications Insu Paek and Ki Cole Abingdon, Oxon Routledge 2020 © 2020 1 online resource (viii, 271 pages) Illustrationen txt rdacontent c rdamedia cr rdacarrier Description based on print version record Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applied researchers who want to learn how to properly use R IRT packages to perform IRT model calibrations with their own data. This book provides practical line-by-line descriptions of how to use R IRT packages for various IRT models. The scope and coverage of the modeling in the book covers almost all models used in practice and in popular research, including: dichotomous response modeling polytomous response modeling mixed format data modeling concurrent multiple group modeling fixed item parameter calibration modelling with latent regression to include person-level covariate(s) simple structure, or between-item, multidimensional modeling cross-loading, or within-item, multidimensional modeling high-dimensional modeling bifactor modeling testlet modeling two-tier modeling For beginners, this book provides a straightforward guide to learn how to use R for IRT applications. For more intermediate learners of IRT or users of R, this book will serve as a great time-saving tool for learning how to create the proper syntax, fit the various models, evaluate the models, and interpret the output using popular R IRT packages Item response theory R (Computer program language) Cole, Ki (DE-588)1197652744 aut |
spellingShingle | Paek, Insu Cole, Ki Using R for item response theory model applications Item response theory R (Computer program language) |
title | Using R for item response theory model applications |
title_auth | Using R for item response theory model applications |
title_exact_search | Using R for item response theory model applications |
title_exact_search_txtP | Using R for item response theory model applications |
title_full | Using R for item response theory model applications Insu Paek and Ki Cole |
title_fullStr | Using R for item response theory model applications Insu Paek and Ki Cole |
title_full_unstemmed | Using R for item response theory model applications Insu Paek and Ki Cole |
title_short | Using R for item response theory model applications |
title_sort | using r for item response theory model applications |
topic | Item response theory R (Computer program language) |
topic_facet | Item response theory R (Computer program language) |
work_keys_str_mv | AT paekinsu usingrforitemresponsetheorymodelapplications AT coleki usingrforitemresponsetheorymodelapplications |