Machine learning design patterns: solutions to common challenges in data preparation, model building, and MLOps
Intro -- Copyright -- Table of Contents -- Preface -- Who Is This Book For? -- What's Not in the Book -- Code Samples -- Conventions Used in This Book -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. The Need for Machine Learning Design Patterns -- What Are...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo
O'Reilly
October 2020
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | FHD01 UBR01 UBY01 UER01 |
Zusammenfassung: | Intro -- Copyright -- Table of Contents -- Preface -- Who Is This Book For? -- What's Not in the Book -- Code Samples -- Conventions Used in This Book -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. The Need for Machine Learning Design Patterns -- What Are Design Patterns? -- How to Use This Book -- Machine Learning Terminology -- Models and Frameworks -- Data and Feature Engineering -- The Machine Learning Process -- Data and Model Tooling -- Roles -- Common Challenges in Machine Learning -- Data Quality -- Reproducibility -- Data Drift -- Scale -- Multiple Objectives -- Summary -- Chapter 2. Data Representation Design Patterns -- Simple Data Representations -- Numerical Inputs -- Categorical Inputs -- Design Pattern 1: Hashed Feature -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 2: Embeddings -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 3: Feature Cross -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 4: Multimodal Input -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 3. Problem Representation Design Patterns -- Design Pattern 5: Reframing -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 6: Multilabel -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 7: Ensembles -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 8: Cascade -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 9: Neutral Class -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 10: Rebalancing -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 4. Model Training Patterns -- Typical Training Loop |
Beschreibung: | 1 Online-Ressource (xiv, 390 Seiten) Illustrationen |
ISBN: | 9781098115753 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV047003243 | ||
003 | DE-604 | ||
005 | 20230801 | ||
007 | cr|uuu---uuuuu | ||
008 | 201118s2020 xxu|||| o||u| ||||||eng d | ||
020 | |a 9781098115753 |c Online |9 978-1-098-11575-3 | ||
035 | |a (ZDB-30-PQE)6372578 | ||
035 | |a (OCoLC)1224008160 | ||
035 | |a (DE-599)BVBBV047003243 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-706 |a DE-355 |a DE-1050 |a DE-29 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Lakshmanan, Valliappa |e Verfasser |0 (DE-588)1222923750 |4 aut | |
245 | 1 | 0 | |a Machine learning design patterns |b solutions to common challenges in data preparation, model building, and MLOps |c Valliappa Lakshmanan, Sara Robinson, and Michael Munn |
250 | |a First edition | ||
264 | 1 | |a Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo |b O'Reilly |c October 2020 | |
300 | |a 1 Online-Ressource (xiv, 390 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Intro -- Copyright -- Table of Contents -- Preface -- Who Is This Book For? -- What's Not in the Book -- Code Samples -- Conventions Used in This Book -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. The Need for Machine Learning Design Patterns -- What Are Design Patterns? -- How to Use This Book -- Machine Learning Terminology -- Models and Frameworks -- Data and Feature Engineering -- The Machine Learning Process -- Data and Model Tooling -- Roles -- Common Challenges in Machine Learning -- Data Quality -- Reproducibility -- Data Drift -- Scale -- Multiple Objectives -- Summary -- Chapter 2. Data Representation Design Patterns -- Simple Data Representations -- Numerical Inputs -- Categorical Inputs -- Design Pattern 1: Hashed Feature -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 2: Embeddings -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 3: Feature Cross -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 4: Multimodal Input -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 3. Problem Representation Design Patterns -- Design Pattern 5: Reframing -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 6: Multilabel -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 7: Ensembles -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 8: Cascade -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 9: Neutral Class -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 10: Rebalancing -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 4. Model Training Patterns -- Typical Training Loop | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entwurfsmuster |0 (DE-588)4546895-3 |2 gnd |9 rswk-swf |
653 | 0 | |a Electronic books | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Entwurfsmuster |0 (DE-588)4546895-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Robinson, Sara |e Verfasser |0 (DE-588)1222923904 |4 aut | |
700 | 1 | |a Munn, Michael |e Verfasser |0 (DE-588)122292398X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-098-11578-4 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032410814 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6372578 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6372578 |l UBR01 |p ZDB-30-PQE |q UBR Sammelbestellung 2021 |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6372578 |l UBY01 |p ZDB-30-PQE |q UBY01_Einzelkauf20 |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6372578 |l UER01 |p ZDB-30-PQE |q UER_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181953338933248 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lakshmanan, Valliappa Robinson, Sara Munn, Michael |
author_GND | (DE-588)1222923750 (DE-588)1222923904 (DE-588)122292398X |
author_facet | Lakshmanan, Valliappa Robinson, Sara Munn, Michael |
author_role | aut aut aut |
author_sort | Lakshmanan, Valliappa |
author_variant | v l vl s r sr m m mm |
building | Verbundindex |
bvnumber | BV047003243 |
classification_rvk | ST 300 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)6372578 (OCoLC)1224008160 (DE-599)BVBBV047003243 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04124nmm a2200481 c 4500</leader><controlfield tag="001">BV047003243</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230801 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201118s2020 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098115753</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-098-11575-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)6372578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224008160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047003243</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lakshmanan, Valliappa</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1222923750</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning design patterns</subfield><subfield code="b">solutions to common challenges in data preparation, model building, and MLOps</subfield><subfield code="c">Valliappa Lakshmanan, Sara Robinson, and Michael Munn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">October 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 390 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Copyright -- Table of Contents -- Preface -- Who Is This Book For? -- What's Not in the Book -- Code Samples -- Conventions Used in This Book -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. The Need for Machine Learning Design Patterns -- What Are Design Patterns? -- How to Use This Book -- Machine Learning Terminology -- Models and Frameworks -- Data and Feature Engineering -- The Machine Learning Process -- Data and Model Tooling -- Roles -- Common Challenges in Machine Learning -- Data Quality -- Reproducibility -- Data Drift -- Scale -- Multiple Objectives -- Summary -- Chapter 2. Data Representation Design Patterns -- Simple Data Representations -- Numerical Inputs -- Categorical Inputs -- Design Pattern 1: Hashed Feature -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 2: Embeddings -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 3: Feature Cross -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 4: Multimodal Input -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 3. Problem Representation Design Patterns -- Design Pattern 5: Reframing -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 6: Multilabel -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 7: Ensembles -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 8: Cascade -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 9: Neutral Class -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 10: Rebalancing -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 4. Model Training Patterns -- Typical Training Loop</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entwurfsmuster</subfield><subfield code="0">(DE-588)4546895-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Entwurfsmuster</subfield><subfield code="0">(DE-588)4546895-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Sara</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1222923904</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munn, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122292398X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-098-11578-4</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032410814</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6372578</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6372578</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBR Sammelbestellung 2021</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6372578</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBY01_Einzelkauf20</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6372578</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UER_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047003243 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:57:41Z |
indexdate | 2024-07-10T08:59:50Z |
institution | BVB |
isbn | 9781098115753 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032410814 |
oclc_num | 1224008160 |
open_access_boolean | |
owner | DE-706 DE-355 DE-BY-UBR DE-1050 DE-29 |
owner_facet | DE-706 DE-355 DE-BY-UBR DE-1050 DE-29 |
physical | 1 Online-Ressource (xiv, 390 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf ZDB-30-PQE UBR Sammelbestellung 2021 ZDB-30-PQE UBY01_Einzelkauf20 ZDB-30-PQE UER_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | O'Reilly |
record_format | marc |
spelling | Lakshmanan, Valliappa Verfasser (DE-588)1222923750 aut Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps Valliappa Lakshmanan, Sara Robinson, and Michael Munn First edition Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo O'Reilly October 2020 1 Online-Ressource (xiv, 390 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Intro -- Copyright -- Table of Contents -- Preface -- Who Is This Book For? -- What's Not in the Book -- Code Samples -- Conventions Used in This Book -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. The Need for Machine Learning Design Patterns -- What Are Design Patterns? -- How to Use This Book -- Machine Learning Terminology -- Models and Frameworks -- Data and Feature Engineering -- The Machine Learning Process -- Data and Model Tooling -- Roles -- Common Challenges in Machine Learning -- Data Quality -- Reproducibility -- Data Drift -- Scale -- Multiple Objectives -- Summary -- Chapter 2. Data Representation Design Patterns -- Simple Data Representations -- Numerical Inputs -- Categorical Inputs -- Design Pattern 1: Hashed Feature -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 2: Embeddings -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 3: Feature Cross -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 4: Multimodal Input -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 3. Problem Representation Design Patterns -- Design Pattern 5: Reframing -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 6: Multilabel -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 7: Ensembles -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 8: Cascade -- Problem -- Solution -- Trade-Offs and Alternatives -- Design Pattern 9: Neutral Class -- Problem -- Solution -- Why It Works -- Trade-Offs and Alternatives -- Design Pattern 10: Rebalancing -- Problem -- Solution -- Trade-Offs and Alternatives -- Summary -- Chapter 4. Model Training Patterns -- Typical Training Loop Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Entwurfsmuster (DE-588)4546895-3 gnd rswk-swf Electronic books Maschinelles Lernen (DE-588)4193754-5 s Entwurfsmuster (DE-588)4546895-3 s DE-604 Robinson, Sara Verfasser (DE-588)1222923904 aut Munn, Michael Verfasser (DE-588)122292398X aut Erscheint auch als Druck-Ausgabe 978-1-098-11578-4 |
spellingShingle | Lakshmanan, Valliappa Robinson, Sara Munn, Michael Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps Maschinelles Lernen (DE-588)4193754-5 gnd Entwurfsmuster (DE-588)4546895-3 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4546895-3 |
title | Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps |
title_auth | Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps |
title_exact_search | Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps |
title_exact_search_txtP | Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps |
title_full | Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps Valliappa Lakshmanan, Sara Robinson, and Michael Munn |
title_fullStr | Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps Valliappa Lakshmanan, Sara Robinson, and Michael Munn |
title_full_unstemmed | Machine learning design patterns solutions to common challenges in data preparation, model building, and MLOps Valliappa Lakshmanan, Sara Robinson, and Michael Munn |
title_short | Machine learning design patterns |
title_sort | machine learning design patterns solutions to common challenges in data preparation model building and mlops |
title_sub | solutions to common challenges in data preparation, model building, and MLOps |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Entwurfsmuster (DE-588)4546895-3 gnd |
topic_facet | Maschinelles Lernen Entwurfsmuster |
work_keys_str_mv | AT lakshmananvalliappa machinelearningdesignpatternssolutionstocommonchallengesindatapreparationmodelbuildingandmlops AT robinsonsara machinelearningdesignpatternssolutionstocommonchallengesindatapreparationmodelbuildingandmlops AT munnmichael machinelearningdesignpatternssolutionstocommonchallengesindatapreparationmodelbuildingandmlops |