Mathematical intuitionism:
L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism - from elementar...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge elements
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBG01 Volltext |
Zusammenfassung: | L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism - from elementary number theory through to Brouwer's uniform continuity theorem - and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth |
Beschreibung: | Title from publisher's bibliographic system (viewed on 29 Oct 2020) |
Beschreibung: | 1 Online-Ressource (107 Seiten) |
ISBN: | 9781108674485 |
DOI: | 10.1017/9781108674485 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047003111 | ||
003 | DE-604 | ||
005 | 20201125 | ||
007 | cr|uuu---uuuuu | ||
008 | 201118s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108674485 |c Online |9 978-1-108-67448-5 | ||
024 | 7 | |a 10.1017/9781108674485 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108674485 | ||
035 | |a (OCoLC)1224017142 | ||
035 | |a (DE-599)BVBBV047003111 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-473 | ||
082 | 0 | |a 510.1 | |
100 | 1 | |a Posy, Carl J. |d 1944- |0 (DE-588)1068554118 |4 aut | |
245 | 1 | 0 | |a Mathematical intuitionism |c Carl J. Posy |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (107 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge elements | |
500 | |a Title from publisher's bibliographic system (viewed on 29 Oct 2020) | ||
520 | |a L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism - from elementary number theory through to Brouwer's uniform continuity theorem - and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth | ||
650 | 4 | |a Mathematics / Philosophy | |
650 | 4 | |a Mathematics / Psychological aspects | |
650 | 0 | 7 | |a Intuitionistische Mathematik |0 (DE-588)4162200-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Intuitionistische Mathematik |0 (DE-588)4162200-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-72302-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108674485 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032410683 | ||
966 | e | |u https://doi.org/10.1017/9781108674485 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108674485 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108674485 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181953137606656 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Posy, Carl J. 1944- |
author_GND | (DE-588)1068554118 |
author_facet | Posy, Carl J. 1944- |
author_role | aut |
author_sort | Posy, Carl J. 1944- |
author_variant | c j p cj cjp |
building | Verbundindex |
bvnumber | BV047003111 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108674485 (OCoLC)1224017142 (DE-599)BVBBV047003111 |
dewey-full | 510.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.1 |
dewey-search | 510.1 |
dewey-sort | 3510.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108674485 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02474nmm a2200457zc 4500</leader><controlfield tag="001">BV047003111</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201125 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201118s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108674485</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-67448-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108674485</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108674485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224017142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047003111</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.1</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Posy, Carl J.</subfield><subfield code="d">1944-</subfield><subfield code="0">(DE-588)1068554118</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical intuitionism</subfield><subfield code="c">Carl J. Posy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (107 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 29 Oct 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism - from elementary number theory through to Brouwer's uniform continuity theorem - and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Psychological aspects</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intuitionistische Mathematik</subfield><subfield code="0">(DE-588)4162200-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Intuitionistische Mathematik</subfield><subfield code="0">(DE-588)4162200-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-72302-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108674485</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032410683</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108674485</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108674485</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108674485</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047003111 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:57:40Z |
indexdate | 2024-07-10T08:59:50Z |
institution | BVB |
isbn | 9781108674485 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032410683 |
oclc_num | 1224017142 |
open_access_boolean | |
owner | DE-12 DE-92 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-92 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (107 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements |
spelling | Posy, Carl J. 1944- (DE-588)1068554118 aut Mathematical intuitionism Carl J. Posy Cambridge Cambridge University Press 2020 1 Online-Ressource (107 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge elements Title from publisher's bibliographic system (viewed on 29 Oct 2020) L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism - from elementary number theory through to Brouwer's uniform continuity theorem - and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth Mathematics / Philosophy Mathematics / Psychological aspects Intuitionistische Mathematik (DE-588)4162200-5 gnd rswk-swf Intuitionistische Mathematik (DE-588)4162200-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-108-72302-2 https://doi.org/10.1017/9781108674485 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Posy, Carl J. 1944- Mathematical intuitionism Mathematics / Philosophy Mathematics / Psychological aspects Intuitionistische Mathematik (DE-588)4162200-5 gnd |
subject_GND | (DE-588)4162200-5 |
title | Mathematical intuitionism |
title_auth | Mathematical intuitionism |
title_exact_search | Mathematical intuitionism |
title_exact_search_txtP | Mathematical intuitionism |
title_full | Mathematical intuitionism Carl J. Posy |
title_fullStr | Mathematical intuitionism Carl J. Posy |
title_full_unstemmed | Mathematical intuitionism Carl J. Posy |
title_short | Mathematical intuitionism |
title_sort | mathematical intuitionism |
topic | Mathematics / Philosophy Mathematics / Psychological aspects Intuitionistische Mathematik (DE-588)4162200-5 gnd |
topic_facet | Mathematics / Philosophy Mathematics / Psychological aspects Intuitionistische Mathematik |
url | https://doi.org/10.1017/9781108674485 |
work_keys_str_mv | AT posycarlj mathematicalintuitionism |