Mathematical intuitionism:

L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism - from elementar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Posy, Carl J. 1944- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2020
Schriftenreihe:Cambridge elements
Schlagworte:
Online-Zugang:BSB01
FHN01
UBG01
Volltext
Zusammenfassung:L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism - from elementary number theory through to Brouwer's uniform continuity theorem - and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth
Beschreibung:Title from publisher's bibliographic system (viewed on 29 Oct 2020)
Beschreibung:1 Online-Ressource (107 Seiten)
ISBN:9781108674485
DOI:10.1017/9781108674485

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen