Probabilistic Deep Learning: with Python, Keras and TensorFlow Probability
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Shelter Island, NY
Manning Publications Company
[2020]
|
Schriftenreihe: | Exercises in Jupyter Notebooks
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | xviii, 274 Seiten Illustrationen, Diagramme |
ISBN: | 9781617296079 1617296074 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047001730 | ||
003 | DE-604 | ||
005 | 20250113 | ||
007 | t| | ||
008 | 201117s2020 xx a||| |||| 00||| eng d | ||
020 | |a 9781617296079 |9 978-1-61729-607-9 | ||
020 | |a 1617296074 |9 1-61729-607-4 | ||
035 | |a (OCoLC)1232509908 | ||
035 | |a (DE-599)KXP1736678035 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-862 |a DE-863 |a DE-355 |a DE-898 |a DE-859 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Dürr, Oliver |e Verfasser |0 (DE-588)1228648204 |4 aut | |
245 | 1 | 0 | |a Probabilistic Deep Learning |b with Python, Keras and TensorFlow Probability |c Oliver Dürr, Beate Sick, with Elvis Murina |
264 | 1 | |a Shelter Island, NY |b Manning Publications Company |c [2020] | |
300 | |a xviii, 274 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Exercises in Jupyter Notebooks | |
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a TensorFlow |0 (DE-588)1153577011 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 2 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 0 | 3 | |a TensorFlow |0 (DE-588)1153577011 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sick, Beate |e Verfasser |0 (DE-588)1023964775 |4 aut | |
700 | 1 | |a Murina, Elvis |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032409345&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032409345&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032409345 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-863_location | 1000 |
DE-BY-FWS_call_number | 2000/ST 302 D853 1000/ST 302 D853 |
DE-BY-FWS_katkey | 857834 |
DE-BY-FWS_media_number | 083000518515 083101192231 |
_version_ | 1824556306255577089 |
adam_text |
brief contents 1 я Introduction to probabilistic deep learning 2 ■ Neural network architectures 3 ■ Principles of curve fitting rAJRT t 3 25 62 Maxim им likeeiiigox /ux-iioxches for 4 ■ Building loss functions with the likelihood approach 93 5 я Probabilistic deep learning models with TensorFlow Probability 128 6 ■ Probabilistic deep learning models in the wild Г3 157 BAV ESAAN AÌXNOXCHES FOR FROXAlíIEISTÍC 195 7 ■ Bayesian learning 8 197 я Bayesian neural networks 229
Probabilistic Deep Learning Dürr «Sick· Murina he world is a noisy and uncertain place. Probabilistic deep learning models capture that noise and uncertainty, pull ing it into real-world scenarios. Crucial for self-driving cars and scientific testing, these techniques help deep learning engineers assess the accuracy of their results, spot errors, and improve their understanding of how algorithms work. T Probabilistic Deep Learning is a hands-on guide to the princi ples that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-toapply code and uses popular frameworks to keep you focused on practical applications. What's Inside • Explore maximum likelihood and the statistical basis of deep learning • Discover probabilistic models that can indicate possible outcomes • Learn to use normalizing flows for modeling and generating complex distributions • Use Bayesian neural networks to access the uncertainty in the model For experienced machine learning developers. Oliver Dürr is a professor at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW and works as a researcher and lecturer at the University of Zurich. EİVİS Murina is a data scientist. |
adam_txt |
brief contents 1 я Introduction to probabilistic deep learning 2 ■ Neural network architectures 3 ■ Principles of curve fitting rAJRT t 3 25 62 Maxim им likeeiiigox /ux-iioxches for 4 ■ Building loss functions with the likelihood approach 93 5 я Probabilistic deep learning models with TensorFlow Probability 128 6 ■ Probabilistic deep learning models in the wild Г3 157 BAV ESAAN AÌXNOXCHES FOR FROXAlíIEISTÍC 195 7 ■ Bayesian learning 8 197 я Bayesian neural networks 229
Probabilistic Deep Learning Dürr «Sick· Murina he world is a noisy and uncertain place. Probabilistic deep learning models capture that noise and uncertainty, pull ing it into real-world scenarios. Crucial for self-driving cars and scientific testing, these techniques help deep learning engineers assess the accuracy of their results, spot errors, and improve their understanding of how algorithms work. T Probabilistic Deep Learning is a hands-on guide to the princi ples that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-toapply code and uses popular frameworks to keep you focused on practical applications. What's Inside • Explore maximum likelihood and the statistical basis of deep learning • Discover probabilistic models that can indicate possible outcomes • Learn to use normalizing flows for modeling and generating complex distributions • Use Bayesian neural networks to access the uncertainty in the model For experienced machine learning developers. Oliver Dürr is a professor at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW and works as a researcher and lecturer at the University of Zurich. EİVİS Murina is a data scientist. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dürr, Oliver Sick, Beate Murina, Elvis |
author_GND | (DE-588)1228648204 (DE-588)1023964775 |
author_facet | Dürr, Oliver Sick, Beate Murina, Elvis |
author_role | aut aut aut |
author_sort | Dürr, Oliver |
author_variant | o d od b s bs e m em |
building | Verbundindex |
bvnumber | BV047001730 |
classification_rvk | ST 302 ST 300 |
ctrlnum | (OCoLC)1232509908 (DE-599)KXP1736678035 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV047001730</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250113</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">201117s2020 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781617296079</subfield><subfield code="9">978-1-61729-607-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1617296074</subfield><subfield code="9">1-61729-607-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1232509908</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1736678035</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dürr, Oliver</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1228648204</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic Deep Learning</subfield><subfield code="b">with Python, Keras and TensorFlow Probability</subfield><subfield code="c">Oliver Dürr, Beate Sick, with Elvis Murina</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Shelter Island, NY</subfield><subfield code="b">Manning Publications Company</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 274 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Exercises in Jupyter Notebooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sick, Beate</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1023964775</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murina, Elvis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032409345&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032409345&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032409345</subfield></datafield></record></collection> |
id | DE-604.BV047001730 |
illustrated | Illustrated |
index_date | 2024-07-03T15:57:11Z |
indexdate | 2025-02-20T07:21:28Z |
institution | BVB |
isbn | 9781617296079 1617296074 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032409345 |
oclc_num | 1232509908 |
open_access_boolean | |
owner | DE-862 DE-BY-FWS DE-863 DE-BY-FWS DE-355 DE-BY-UBR DE-898 DE-BY-UBR DE-859 |
owner_facet | DE-862 DE-BY-FWS DE-863 DE-BY-FWS DE-355 DE-BY-UBR DE-898 DE-BY-UBR DE-859 |
physical | xviii, 274 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Manning Publications Company |
record_format | marc |
series2 | Exercises in Jupyter Notebooks |
spellingShingle | Dürr, Oliver Sick, Beate Murina, Elvis Probabilistic Deep Learning with Python, Keras and TensorFlow Probability Keras Framework, Informatik (DE-588)1160521077 gnd Deep Learning (DE-588)1135597375 gnd Python Programmiersprache (DE-588)4434275-5 gnd TensorFlow (DE-588)1153577011 gnd |
subject_GND | (DE-588)1160521077 (DE-588)1135597375 (DE-588)4434275-5 (DE-588)1153577011 |
title | Probabilistic Deep Learning with Python, Keras and TensorFlow Probability |
title_auth | Probabilistic Deep Learning with Python, Keras and TensorFlow Probability |
title_exact_search | Probabilistic Deep Learning with Python, Keras and TensorFlow Probability |
title_exact_search_txtP | Probabilistic Deep Learning With Python, Keras and TensorFlow Probability |
title_full | Probabilistic Deep Learning with Python, Keras and TensorFlow Probability Oliver Dürr, Beate Sick, with Elvis Murina |
title_fullStr | Probabilistic Deep Learning with Python, Keras and TensorFlow Probability Oliver Dürr, Beate Sick, with Elvis Murina |
title_full_unstemmed | Probabilistic Deep Learning with Python, Keras and TensorFlow Probability Oliver Dürr, Beate Sick, with Elvis Murina |
title_short | Probabilistic Deep Learning |
title_sort | probabilistic deep learning with python keras and tensorflow probability |
title_sub | with Python, Keras and TensorFlow Probability |
topic | Keras Framework, Informatik (DE-588)1160521077 gnd Deep Learning (DE-588)1135597375 gnd Python Programmiersprache (DE-588)4434275-5 gnd TensorFlow (DE-588)1153577011 gnd |
topic_facet | Keras Framework, Informatik Deep Learning Python Programmiersprache TensorFlow |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032409345&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032409345&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT durroliver probabilisticdeeplearningwithpythonkerasandtensorflowprobability AT sickbeate probabilisticdeeplearningwithpythonkerasandtensorflowprobability AT murinaelvis probabilisticdeeplearningwithpythonkerasandtensorflowprobability |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 302 D853 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |
THWS Würzburg Zentralbibliothek Lesesaal
Signatur: |
1000 ST 302 D853 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |