Partial differential equations: classical theory with a modern touch
First-order partial differential equations : method of characteristics -- Hamilton-Jacobi equation -- Conservation laws -- Classification of second-order equations -- Laplace and Poisson equations -- Heat equation -- One-dimensional wave equation -- Wave equation in higher dimensions -- Cauchy-Koval...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY ; Port Melboune, VIC ; New Delhi ; Singapore
Cambridge University Press
2020
|
Ausgabe: | First published |
Schriftenreihe: | Cambridge-IISc series
|
Schlagworte: | |
Zusammenfassung: | First-order partial differential equations : method of characteristics -- Hamilton-Jacobi equation -- Conservation laws -- Classification of second-order equations -- Laplace and Poisson equations -- Heat equation -- One-dimensional wave equation -- Wave equation in higher dimensions -- Cauchy-Kovalevsky theorem and its generalization -- A peep into weak derivatives, Sobolev spaces and weak formulation "The aim of the present book is to introduce the fundamental topics in a classical way as in any first book on PDE. The authors have demonstrated the basic topics in such a way that the doors of the modern theory are open to interested readers. For example, after the introduction to method of characteristics for first order equations, immediately the importance of introducing the notion of weak solutions to two important class of first order equations, namely conservation laws and Hamilton-Jacobi equations, is discussed. Almost all the chapters cover something about the modern topics. This is the modern touch that the authors have envisaged and decided to put in the title. Also included are many exercises in most of the chapters. These will help students to get a better insight of the subject. Hints or answers are provided to some selected exercises"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xix, 356 Seiten Diagramme |
ISBN: | 9781108839808 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046999708 | ||
003 | DE-604 | ||
005 | 20230815 | ||
007 | t | ||
008 | 201116s2020 xxk|||| |||| 00||| eng d | ||
020 | |a 9781108839808 |c hardback |9 978-1-108-83980-8 | ||
035 | |a (OCoLC)1187175556 | ||
035 | |a (DE-599)KXP169808174X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-19 |a DE-20 |a DE-83 | ||
050 | 0 | |a QA374 | |
082 | 0 | |a 515/.353 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 35-01 |2 msc | ||
100 | 1 | |a Nandakumaran, A. K. |d ca. 20./21. Jh. |0 (DE-588)1135937907 |4 aut | |
245 | 1 | 0 | |a Partial differential equations |b classical theory with a modern touch |c A.K. Nandakumaran ; P.S. Datti |
250 | |a First published | ||
264 | 1 | |a Cambridge ; New York, NY ; Port Melboune, VIC ; New Delhi ; Singapore |b Cambridge University Press |c 2020 | |
300 | |a xix, 356 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge-IISc series | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a First-order partial differential equations : method of characteristics -- Hamilton-Jacobi equation -- Conservation laws -- Classification of second-order equations -- Laplace and Poisson equations -- Heat equation -- One-dimensional wave equation -- Wave equation in higher dimensions -- Cauchy-Kovalevsky theorem and its generalization -- A peep into weak derivatives, Sobolev spaces and weak formulation | |
520 | 3 | |a "The aim of the present book is to introduce the fundamental topics in a classical way as in any first book on PDE. The authors have demonstrated the basic topics in such a way that the doors of the modern theory are open to interested readers. For example, after the introduction to method of characteristics for first order equations, immediately the importance of introducing the notion of weak solutions to two important class of first order equations, namely conservation laws and Hamilton-Jacobi equations, is discussed. Almost all the chapters cover something about the modern topics. This is the modern touch that the authors have envisaged and decided to put in the title. Also included are many exercises in most of the chapters. These will help students to get a better insight of the subject. Hints or answers are provided to some selected exercises"-- | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Differential equations, Partial / Textbooks | |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Datti, P. S. |d ca. 20./21. Jh. |0 (DE-588)116803874X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-88517-1 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032407370 |
Datensatz im Suchindex
_version_ | 1804181947570716672 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Nandakumaran, A. K. ca. 20./21. Jh Datti, P. S. ca. 20./21. Jh |
author_GND | (DE-588)1135937907 (DE-588)116803874X |
author_facet | Nandakumaran, A. K. ca. 20./21. Jh Datti, P. S. ca. 20./21. Jh |
author_role | aut aut |
author_sort | Nandakumaran, A. K. ca. 20./21. Jh |
author_variant | a k n ak akn p s d ps psd |
building | Verbundindex |
bvnumber | BV046999708 |
callnumber-first | Q - Science |
callnumber-label | QA374 |
callnumber-raw | QA374 |
callnumber-search | QA374 |
callnumber-sort | QA 3374 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 540 |
ctrlnum | (OCoLC)1187175556 (DE-599)KXP169808174X |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | First published |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03025nam a2200481 c 4500</leader><controlfield tag="001">BV046999708</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230815 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">201116s2020 xxk|||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108839808</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-108-83980-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1187175556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP169808174X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA374</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nandakumaran, A. K.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1135937907</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial differential equations</subfield><subfield code="b">classical theory with a modern touch</subfield><subfield code="c">A.K. Nandakumaran ; P.S. Datti</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First published</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY ; Port Melboune, VIC ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 356 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge-IISc series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">First-order partial differential equations : method of characteristics -- Hamilton-Jacobi equation -- Conservation laws -- Classification of second-order equations -- Laplace and Poisson equations -- Heat equation -- One-dimensional wave equation -- Wave equation in higher dimensions -- Cauchy-Kovalevsky theorem and its generalization -- A peep into weak derivatives, Sobolev spaces and weak formulation</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"The aim of the present book is to introduce the fundamental topics in a classical way as in any first book on PDE. The authors have demonstrated the basic topics in such a way that the doors of the modern theory are open to interested readers. For example, after the introduction to method of characteristics for first order equations, immediately the importance of introducing the notion of weak solutions to two important class of first order equations, namely conservation laws and Hamilton-Jacobi equations, is discussed. Almost all the chapters cover something about the modern topics. This is the modern touch that the authors have envisaged and decided to put in the title. Also included are many exercises in most of the chapters. These will help students to get a better insight of the subject. Hints or answers are provided to some selected exercises"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial / Textbooks</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Datti, P. S.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)116803874X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-88517-1</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032407370</subfield></datafield></record></collection> |
id | DE-604.BV046999708 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:56:26Z |
indexdate | 2024-07-10T08:59:45Z |
institution | BVB |
isbn | 9781108839808 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032407370 |
oclc_num | 1187175556 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-20 DE-83 |
owner_facet | DE-19 DE-BY-UBM DE-20 DE-83 |
physical | xix, 356 Seiten Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge-IISc series |
spelling | Nandakumaran, A. K. ca. 20./21. Jh. (DE-588)1135937907 aut Partial differential equations classical theory with a modern touch A.K. Nandakumaran ; P.S. Datti First published Cambridge ; New York, NY ; Port Melboune, VIC ; New Delhi ; Singapore Cambridge University Press 2020 xix, 356 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Cambridge-IISc series Includes bibliographical references and index First-order partial differential equations : method of characteristics -- Hamilton-Jacobi equation -- Conservation laws -- Classification of second-order equations -- Laplace and Poisson equations -- Heat equation -- One-dimensional wave equation -- Wave equation in higher dimensions -- Cauchy-Kovalevsky theorem and its generalization -- A peep into weak derivatives, Sobolev spaces and weak formulation "The aim of the present book is to introduce the fundamental topics in a classical way as in any first book on PDE. The authors have demonstrated the basic topics in such a way that the doors of the modern theory are open to interested readers. For example, after the introduction to method of characteristics for first order equations, immediately the importance of introducing the notion of weak solutions to two important class of first order equations, namely conservation laws and Hamilton-Jacobi equations, is discussed. Almost all the chapters cover something about the modern topics. This is the modern touch that the authors have envisaged and decided to put in the title. Also included are many exercises in most of the chapters. These will help students to get a better insight of the subject. Hints or answers are provided to some selected exercises"-- Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Differential equations, Partial / Textbooks Partielle Differentialgleichung (DE-588)4044779-0 s DE-604 Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Datti, P. S. ca. 20./21. Jh. (DE-588)116803874X aut Erscheint auch als Online-Ausgabe 978-1-108-88517-1 |
spellingShingle | Nandakumaran, A. K. ca. 20./21. Jh Datti, P. S. ca. 20./21. Jh Partial differential equations classical theory with a modern touch Partielle Differentialgleichung (DE-588)4044779-0 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4020929-5 |
title | Partial differential equations classical theory with a modern touch |
title_auth | Partial differential equations classical theory with a modern touch |
title_exact_search | Partial differential equations classical theory with a modern touch |
title_exact_search_txtP | Partial differential equations classical theory with a modern touch |
title_full | Partial differential equations classical theory with a modern touch A.K. Nandakumaran ; P.S. Datti |
title_fullStr | Partial differential equations classical theory with a modern touch A.K. Nandakumaran ; P.S. Datti |
title_full_unstemmed | Partial differential equations classical theory with a modern touch A.K. Nandakumaran ; P.S. Datti |
title_short | Partial differential equations |
title_sort | partial differential equations classical theory with a modern touch |
title_sub | classical theory with a modern touch |
topic | Partielle Differentialgleichung (DE-588)4044779-0 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
topic_facet | Partielle Differentialgleichung Gewöhnliche Differentialgleichung |
work_keys_str_mv | AT nandakumaranak partialdifferentialequationsclassicaltheorywithamoderntouch AT dattips partialdifferentialequationsclassicaltheorywithamoderntouch |