Interactive process mining in healthcare:
This book provides a practically applicable guide to the methodologies and technologies for the application of interactive process mining paradigm. Case studies are presented where this paradigm has been successfully applied in emergency medicine, surgery processes, human behavior modelling, strokes...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2021]
|
Schriftenreihe: | Health informatics
|
Schlagworte: | |
Online-Zugang: | FHD01 TUM01 UBR01 Volltext |
Zusammenfassung: | This book provides a practically applicable guide to the methodologies and technologies for the application of interactive process mining paradigm. Case studies are presented where this paradigm has been successfully applied in emergency medicine, surgery processes, human behavior modelling, strokes and outpatients' services, enabling the reader to develop a deep understanding of how to apply process mining technologies in healthcare to support them in inferring new knowledge from past actions, and providing accurate and personalized knowledge to improve their future clinical decision-making. Interactive Process Mining in Healthcare comprehensively covers how machine learning algorithms can be utilized to create real scientific evidence to improve daily healthcare protocols, and is a valuable resource for a variety of health professionals seeking to develop new methods to improve their clinical decision-making. |
Beschreibung: | Introduction -- Toward an integration of Data Science and Medical Domain -- To an interactive machine learning approach -- Process Mining for Healthcare -- Interactive process Mining paradigm -- Interactive Process Mining in Practice: Interactive Key Process Indicators -- Data Quality in Process Mining, Legal Issues and Open Data Integration -- Real Success Cases -- New Challenges. |
Beschreibung: | 1 Online-Ressource (xiv, 306 Seiten) Illustrationen |
ISBN: | 9783030539931 |
DOI: | 10.1007/978-3-030-53993-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046997503 | ||
003 | DE-604 | ||
005 | 20221212 | ||
007 | cr|uuu---uuuuu | ||
008 | 201113s2021 |||| o||u| ||||||eng d | ||
020 | |a 9783030539931 |9 978-3-030-53993-1 | ||
024 | 7 | |a 10.1007/978-3-030-53993-1 |2 doi | |
035 | |a (ZDB-2-SME)978-3-030-53993-1 | ||
035 | |a (OCoLC)1220890196 | ||
035 | |a (DE-599)BVBBV046997503 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-1050 |a DE-578 |a DE-91 | ||
082 | 0 | |a 502.85 | |
084 | |a ST 640 |0 (DE-625)143686: |2 rvk | ||
245 | 1 | 0 | |a Interactive process mining in healthcare |c Carlos Fernandez-Llatas, editor |
264 | 1 | |a Cham, Switzerland |b Springer |c [2021] | |
300 | |a 1 Online-Ressource (xiv, 306 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Health informatics | |
500 | |a Introduction -- Toward an integration of Data Science and Medical Domain -- To an interactive machine learning approach -- Process Mining for Healthcare -- Interactive process Mining paradigm -- Interactive Process Mining in Practice: Interactive Key Process Indicators -- Data Quality in Process Mining, Legal Issues and Open Data Integration -- Real Success Cases -- New Challenges. | ||
520 | |a This book provides a practically applicable guide to the methodologies and technologies for the application of interactive process mining paradigm. Case studies are presented where this paradigm has been successfully applied in emergency medicine, surgery processes, human behavior modelling, strokes and outpatients' services, enabling the reader to develop a deep understanding of how to apply process mining technologies in healthcare to support them in inferring new knowledge from past actions, and providing accurate and personalized knowledge to improve their future clinical decision-making. Interactive Process Mining in Healthcare comprehensively covers how machine learning algorithms can be utilized to create real scientific evidence to improve daily healthcare protocols, and is a valuable resource for a variety of health professionals seeking to develop new methods to improve their clinical decision-making. | ||
650 | 4 | |a Health informatics | |
650 | 4 | |a Data mining | |
650 | 4 | |a Bioinformatics | |
650 | 0 | 7 | |a Gesundheitsinformationssystem |0 (DE-588)4113742-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gesundheitsinformationssystem |0 (DE-588)4113742-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fernandez-Llatas, Carlos |0 (DE-588)1275318355 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-53992-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783030539948 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783030539955 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-53993-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-2-SME |a ZDB-2-SXM |a ZDB-4-NLEBK | ||
940 | 1 | |q ZDB-2-SME_2021_Fremddaten | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032405224 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6381343 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2661571 |l TUM01 |p ZDB-4-NLEBK |q TUM_PDA_EBSCOMED_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-53993-1 |l UBR01 |p ZDB-2-SME |q ZDB-2-SME_2021_Fremddaten |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181944068472832 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Fernandez-Llatas, Carlos |
author2_role | edt |
author2_variant | c f l cfl |
author_GND | (DE-588)1275318355 |
author_facet | Fernandez-Llatas, Carlos |
building | Verbundindex |
bvnumber | BV046997503 |
classification_rvk | ST 640 |
collection | ZDB-30-PQE ZDB-2-SME ZDB-2-SXM ZDB-4-NLEBK |
ctrlnum | (ZDB-2-SME)978-3-030-53993-1 (OCoLC)1220890196 (DE-599)BVBBV046997503 |
dewey-full | 502.85 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 502 - Miscellany |
dewey-raw | 502.85 |
dewey-search | 502.85 |
dewey-sort | 3502.85 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft Informatik |
discipline_str_mv | Allgemeine Naturwissenschaft Informatik |
doi_str_mv | 10.1007/978-3-030-53993-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03480nmm a2200517zc 4500</leader><controlfield tag="001">BV046997503</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201113s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030539931</subfield><subfield code="9">978-3-030-53993-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-53993-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SME)978-3-030-53993-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220890196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046997503</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">502.85</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 640</subfield><subfield code="0">(DE-625)143686:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interactive process mining in healthcare</subfield><subfield code="c">Carlos Fernandez-Llatas, editor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 306 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Health informatics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- Toward an integration of Data Science and Medical Domain -- To an interactive machine learning approach -- Process Mining for Healthcare -- Interactive process Mining paradigm -- Interactive Process Mining in Practice: Interactive Key Process Indicators -- Data Quality in Process Mining, Legal Issues and Open Data Integration -- Real Success Cases -- New Challenges.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a practically applicable guide to the methodologies and technologies for the application of interactive process mining paradigm. Case studies are presented where this paradigm has been successfully applied in emergency medicine, surgery processes, human behavior modelling, strokes and outpatients' services, enabling the reader to develop a deep understanding of how to apply process mining technologies in healthcare to support them in inferring new knowledge from past actions, and providing accurate and personalized knowledge to improve their future clinical decision-making. Interactive Process Mining in Healthcare comprehensively covers how machine learning algorithms can be utilized to create real scientific evidence to improve daily healthcare protocols, and is a valuable resource for a variety of health professionals seeking to develop new methods to improve their clinical decision-making.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health informatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gesundheitsinformationssystem</subfield><subfield code="0">(DE-588)4113742-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gesundheitsinformationssystem</subfield><subfield code="0">(DE-588)4113742-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernandez-Llatas, Carlos</subfield><subfield code="0">(DE-588)1275318355</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-53992-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783030539948</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783030539955</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-53993-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-2-SME</subfield><subfield code="a">ZDB-2-SXM</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SME_2021_Fremddaten</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032405224</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6381343</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2661571</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_PDA_EBSCOMED_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-53993-1</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SME</subfield><subfield code="q">ZDB-2-SME_2021_Fremddaten</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046997503 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:55:36Z |
indexdate | 2024-07-10T08:59:42Z |
institution | BVB |
isbn | 9783030539931 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032405224 |
oclc_num | 1220890196 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-1050 DE-578 DE-91 DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-1050 DE-578 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 306 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-2-SME ZDB-2-SXM ZDB-4-NLEBK ZDB-2-SME_2021_Fremddaten ZDB-30-PQE FHD01_PQE_Kauf ZDB-4-NLEBK TUM_PDA_EBSCOMED_Kauf ZDB-2-SME ZDB-2-SME_2021_Fremddaten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer |
record_format | marc |
series2 | Health informatics |
spelling | Interactive process mining in healthcare Carlos Fernandez-Llatas, editor Cham, Switzerland Springer [2021] 1 Online-Ressource (xiv, 306 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Health informatics Introduction -- Toward an integration of Data Science and Medical Domain -- To an interactive machine learning approach -- Process Mining for Healthcare -- Interactive process Mining paradigm -- Interactive Process Mining in Practice: Interactive Key Process Indicators -- Data Quality in Process Mining, Legal Issues and Open Data Integration -- Real Success Cases -- New Challenges. This book provides a practically applicable guide to the methodologies and technologies for the application of interactive process mining paradigm. Case studies are presented where this paradigm has been successfully applied in emergency medicine, surgery processes, human behavior modelling, strokes and outpatients' services, enabling the reader to develop a deep understanding of how to apply process mining technologies in healthcare to support them in inferring new knowledge from past actions, and providing accurate and personalized knowledge to improve their future clinical decision-making. Interactive Process Mining in Healthcare comprehensively covers how machine learning algorithms can be utilized to create real scientific evidence to improve daily healthcare protocols, and is a valuable resource for a variety of health professionals seeking to develop new methods to improve their clinical decision-making. Data mining Bioinformatics Gesundheitsinformationssystem (DE-588)4113742-5 gnd rswk-swf Gesundheitsinformationssystem (DE-588)4113742-5 s DE-604 Fernandez-Llatas, Carlos (DE-588)1275318355 edt Erscheint auch als Druck-Ausgabe 978-3-030-53992-4 Erscheint auch als Druck-Ausgabe 9783030539948 Erscheint auch als Druck-Ausgabe 9783030539955 https://doi.org/10.1007/978-3-030-53993-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Interactive process mining in healthcare Health informatics Data mining Bioinformatics Gesundheitsinformationssystem (DE-588)4113742-5 gnd |
subject_GND | (DE-588)4113742-5 |
title | Interactive process mining in healthcare |
title_auth | Interactive process mining in healthcare |
title_exact_search | Interactive process mining in healthcare |
title_exact_search_txtP | Interactive process mining in healthcare |
title_full | Interactive process mining in healthcare Carlos Fernandez-Llatas, editor |
title_fullStr | Interactive process mining in healthcare Carlos Fernandez-Llatas, editor |
title_full_unstemmed | Interactive process mining in healthcare Carlos Fernandez-Llatas, editor |
title_short | Interactive process mining in healthcare |
title_sort | interactive process mining in healthcare |
topic | Health informatics Data mining Bioinformatics Gesundheitsinformationssystem (DE-588)4113742-5 gnd |
topic_facet | Health informatics Data mining Bioinformatics Gesundheitsinformationssystem |
url | https://doi.org/10.1007/978-3-030-53993-1 |
work_keys_str_mv | AT fernandezllatascarlos interactiveprocessmininginhealthcare |