Asymptotic analysis of random walks: light-tailed distributions
This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistic...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY
Cambridge University Press
2020
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
176 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 URL des Erstveröffentlichers |
Zusammenfassung: | This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time |
Beschreibung: | Title from publisher's bibliographic system (viewed on 29 Oct 2020) |
Beschreibung: | 1 Online-Ressource (xvi, 419 Seiten) |
ISBN: | 9781139871303 |
DOI: | 10.1017/9781139871303 |
Internformat
MARC
LEADER | 00000nmm a22000008c 4500 | ||
---|---|---|---|
001 | BV046975422 | ||
003 | DE-604 | ||
005 | 20201118 | ||
007 | cr|uuu---uuuuu | ||
008 | 201103s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781139871303 |c Online |9 978-1-139-87130-3 | ||
024 | 7 | |a 10.1017/9781139871303 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139871303 | ||
035 | |a (OCoLC)1220904956 | ||
035 | |a (DE-599)BVBBV046975422 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.2/82 | |
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a UG 3500 |0 (DE-625)145626: |2 rvk | ||
100 | 1 | |a Borovkov, A. A. |d 1931- |e Verfasser |0 (DE-588)1089930224 |4 aut | |
245 | 1 | 0 | |a Asymptotic analysis of random walks |b light-tailed distributions |c A.A. Borovkov, Sobolev Institute of Mathematics, Novosibirsk ; translated by V.V. Ulyanov, Higher School of Economics, Mikhail Zhitlukhin, Steklov Institute of Mathematics, Moscow |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xvi, 419 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications | |
490 | 0 | |a 176 | |
500 | |a Title from publisher's bibliographic system (viewed on 29 Oct 2020) | ||
520 | |a This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time | ||
650 | 0 | 7 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Random walks (Mathematics) | |
653 | 0 | |a Asymptotic distribution (Probability theory) | |
653 | 0 | |a Asymptotic expansions | |
653 | 0 | |a Random walks (Mathematics) | |
689 | 0 | 0 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |D s |
689 | 0 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-07468-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781139871303 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032383557 | ||
966 | e | |u https://doi.org/10.1017/9781139871303 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139871303 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139871303 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181905587830784 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Borovkov, A. A. 1931- |
author_GND | (DE-588)1089930224 |
author_facet | Borovkov, A. A. 1931- |
author_role | aut |
author_sort | Borovkov, A. A. 1931- |
author_variant | a a b aa aab |
building | Verbundindex |
bvnumber | BV046975422 |
classification_rvk | SK 810 UG 3500 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139871303 (OCoLC)1220904956 (DE-599)BVBBV046975422 |
dewey-full | 519.2/82 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/82 |
dewey-search | 519.2/82 |
dewey-sort | 3519.2 282 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1017/9781139871303 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03518nmm a22005418c 4500</leader><controlfield tag="001">BV046975422</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201118 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201103s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139871303</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-87130-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781139871303</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139871303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220904956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046975422</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/82</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3500</subfield><subfield code="0">(DE-625)145626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borovkov, A. A.</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089930224</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic analysis of random walks</subfield><subfield code="b">light-tailed distributions</subfield><subfield code="c">A.A. Borovkov, Sobolev Institute of Mathematics, Novosibirsk ; translated by V.V. Ulyanov, Higher School of Economics, Mikhail Zhitlukhin, Steklov Institute of Mathematics, Moscow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 419 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">176</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 29 Oct 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Asymptotic distribution (Probability theory)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Asymptotic expansions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-07468-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781139871303</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032383557</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139871303</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139871303</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139871303</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046975422 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:48:27Z |
indexdate | 2024-07-10T08:59:05Z |
institution | BVB |
isbn | 9781139871303 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032383557 |
oclc_num | 1220904956 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 |
owner_facet | DE-384 DE-12 DE-92 |
physical | 1 Online-Ressource (xvi, 419 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications 176 |
spelling | Borovkov, A. A. 1931- Verfasser (DE-588)1089930224 aut Asymptotic analysis of random walks light-tailed distributions A.A. Borovkov, Sobolev Institute of Mathematics, Novosibirsk ; translated by V.V. Ulyanov, Higher School of Economics, Mikhail Zhitlukhin, Steklov Institute of Mathematics, Moscow Cambridge, United Kingdom ; New York, NY Cambridge University Press 2020 1 Online-Ressource (xvi, 419 Seiten) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications 176 Title from publisher's bibliographic system (viewed on 29 Oct 2020) This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time Irrfahrtsproblem (DE-588)4162442-7 gnd rswk-swf Asymptotik (DE-588)4126634-1 gnd rswk-swf Random walks (Mathematics) Asymptotic distribution (Probability theory) Asymptotic expansions Irrfahrtsproblem (DE-588)4162442-7 s Asymptotik (DE-588)4126634-1 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-107-07468-2 https://doi.org/10.1017/9781139871303 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Borovkov, A. A. 1931- Asymptotic analysis of random walks light-tailed distributions Irrfahrtsproblem (DE-588)4162442-7 gnd Asymptotik (DE-588)4126634-1 gnd |
subject_GND | (DE-588)4162442-7 (DE-588)4126634-1 |
title | Asymptotic analysis of random walks light-tailed distributions |
title_auth | Asymptotic analysis of random walks light-tailed distributions |
title_exact_search | Asymptotic analysis of random walks light-tailed distributions |
title_exact_search_txtP | Asymptotic analysis of random walks light-tailed distributions |
title_full | Asymptotic analysis of random walks light-tailed distributions A.A. Borovkov, Sobolev Institute of Mathematics, Novosibirsk ; translated by V.V. Ulyanov, Higher School of Economics, Mikhail Zhitlukhin, Steklov Institute of Mathematics, Moscow |
title_fullStr | Asymptotic analysis of random walks light-tailed distributions A.A. Borovkov, Sobolev Institute of Mathematics, Novosibirsk ; translated by V.V. Ulyanov, Higher School of Economics, Mikhail Zhitlukhin, Steklov Institute of Mathematics, Moscow |
title_full_unstemmed | Asymptotic analysis of random walks light-tailed distributions A.A. Borovkov, Sobolev Institute of Mathematics, Novosibirsk ; translated by V.V. Ulyanov, Higher School of Economics, Mikhail Zhitlukhin, Steklov Institute of Mathematics, Moscow |
title_short | Asymptotic analysis of random walks |
title_sort | asymptotic analysis of random walks light tailed distributions |
title_sub | light-tailed distributions |
topic | Irrfahrtsproblem (DE-588)4162442-7 gnd Asymptotik (DE-588)4126634-1 gnd |
topic_facet | Irrfahrtsproblem Asymptotik |
url | https://doi.org/10.1017/9781139871303 |
work_keys_str_mv | AT borovkovaa asymptoticanalysisofrandomwalkslighttaileddistributions |