Potential theory and geometry on Lie groups:
This book provides a complete and reasonably self-contained account of a new classification of connected Lie groups into two classes. The first part describes the use of tools from potential theory to establish the classification and to show that the analytic and algebraic approaches to the classifi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2020
|
Schriftenreihe: | New mathematical monographs
38 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 TUM02 UBA01 Volltext |
Zusammenfassung: | This book provides a complete and reasonably self-contained account of a new classification of connected Lie groups into two classes. The first part describes the use of tools from potential theory to establish the classification and to show that the analytic and algebraic approaches to the classification are equivalent. Part II covers geometric theory of the same classification and a proof that it is equivalent to the algebraic approach. Part III is a new approach to the geometric classification that requires more advanced geometric technology, namely homotopy, homology and the theory of currents. Using these methods, a more direct, but also more sophisticated, approach to the equivalence of the geometric and algebraic classification is made. Background material is introduced gradually to familiarise readers with ideas from areas such as Lie groups, differential topology and probability, in particular, random walks on groups. Numerous open problems inspire students to explore further |
Beschreibung: | The classification and the first main theorem -- NC-groups -- The B-NB classification -- NB-Groups -- Other classes of locally compact groups -- The geometric theory. An introduction -- The geometric NC-theorem -- Algebra and geometries on C-groups -- The end game in the C-theorem -- The metric classification -- The homotopy and homology classification of connected Lie groups -- The polynomial homology for simply connected soluble groups -- Cohomology on Lie groups Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xxvii, 596 Seiten) |
ISBN: | 9781139567718 |
DOI: | 10.1017/9781139567718 |
Internformat
MARC
LEADER | 00000nmm a22000008cb4500 | ||
---|---|---|---|
001 | BV046975395 | ||
003 | DE-604 | ||
005 | 20211026 | ||
007 | cr|uuu---uuuuu | ||
008 | 201103s2020 xxk|||| o||u| ||||||eng d | ||
020 | |a 9781139567718 |c Online |9 978-1-139-56771-8 | ||
024 | 7 | |a 10.1017/9781139567718 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139567718 | ||
035 | |a (OCoLC)1220900237 | ||
035 | |a (DE-599)BVBBV046975395 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-384 |a DE-12 |a DE-92 |a DE-91G | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512/.482 | |
084 | |a MAT 225 |2 stub | ||
100 | 1 | |a Varopoulos, N. Th. |d 1940- |e Verfasser |0 (DE-588)141712228 |4 aut | |
245 | 1 | 0 | |a Potential theory and geometry on Lie groups |c N. Th. Varopoulos |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xxvii, 596 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a New mathematical monographs |v 38 | |
500 | |a The classification and the first main theorem -- NC-groups -- The B-NB classification -- NB-Groups -- Other classes of locally compact groups -- The geometric theory. An introduction -- The geometric NC-theorem -- Algebra and geometries on C-groups -- The end game in the C-theorem -- The metric classification -- The homotopy and homology classification of connected Lie groups -- The polynomial homology for simply connected soluble groups -- Cohomology on Lie groups | ||
500 | |a Includes bibliographical references and index | ||
520 | |a This book provides a complete and reasonably self-contained account of a new classification of connected Lie groups into two classes. The first part describes the use of tools from potential theory to establish the classification and to show that the analytic and algebraic approaches to the classification are equivalent. Part II covers geometric theory of the same classification and a proof that it is equivalent to the algebraic approach. Part III is a new approach to the geometric classification that requires more advanced geometric technology, namely homotopy, homology and the theory of currents. Using these methods, a more direct, but also more sophisticated, approach to the equivalence of the geometric and algebraic classification is made. Background material is introduced gradually to familiarise readers with ideas from areas such as Lie groups, differential topology and probability, in particular, random walks on groups. Numerous open problems inspire students to explore further | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Geometry | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 0 | 7 | |a Potenzialtheorie |0 (DE-588)4046939-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | 2 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-107-03649-9 |
830 | 0 | |a New mathematical monographs |v 38 |w (DE-604)BV045935264 |9 38 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781139567718 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032383532 | ||
966 | e | |u https://doi.org/10.1017/9781139567718 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139567718 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139567718 |l TUM01 |p ZDB-20-CBO |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139567718 |l TUM02 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139567718 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181905544839168 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Varopoulos, N. Th. 1940- |
author_GND | (DE-588)141712228 |
author_facet | Varopoulos, N. Th. 1940- |
author_role | aut |
author_sort | Varopoulos, N. Th. 1940- |
author_variant | n t v nt ntv |
building | Verbundindex |
bvnumber | BV046975395 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_tum | MAT 225 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139567718 (OCoLC)1220900237 (DE-599)BVBBV046975395 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781139567718 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03966nmm a22006018cb4500</leader><controlfield tag="001">BV046975395</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211026 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201103s2020 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139567718</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-56771-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781139567718</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139567718</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220900237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046975395</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varopoulos, N. Th.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141712228</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Potential theory and geometry on Lie groups</subfield><subfield code="c">N. Th. Varopoulos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvii, 596 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">38</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The classification and the first main theorem -- NC-groups -- The B-NB classification -- NB-Groups -- Other classes of locally compact groups -- The geometric theory. An introduction -- The geometric NC-theorem -- Algebra and geometries on C-groups -- The end game in the C-theorem -- The metric classification -- The homotopy and homology classification of connected Lie groups -- The polynomial homology for simply connected soluble groups -- Cohomology on Lie groups</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a complete and reasonably self-contained account of a new classification of connected Lie groups into two classes. The first part describes the use of tools from potential theory to establish the classification and to show that the analytic and algebraic approaches to the classification are equivalent. Part II covers geometric theory of the same classification and a proof that it is equivalent to the algebraic approach. Part III is a new approach to the geometric classification that requires more advanced geometric technology, namely homotopy, homology and the theory of currents. Using these methods, a more direct, but also more sophisticated, approach to the equivalence of the geometric and algebraic classification is made. Background material is introduced gradually to familiarise readers with ideas from areas such as Lie groups, differential topology and probability, in particular, random walks on groups. Numerous open problems inspire students to explore further</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-107-03649-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs</subfield><subfield code="v">38</subfield><subfield code="w">(DE-604)BV045935264</subfield><subfield code="9">38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781139567718</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032383532</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139567718</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139567718</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139567718</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139567718</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139567718</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046975395 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:48:26Z |
indexdate | 2024-07-10T08:59:05Z |
institution | BVB |
isbn | 9781139567718 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032383532 |
oclc_num | 1220900237 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 DE-91G DE-BY-TUM |
owner_facet | DE-384 DE-12 DE-92 DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xxvii, 596 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | New mathematical monographs |
series2 | New mathematical monographs |
spelling | Varopoulos, N. Th. 1940- Verfasser (DE-588)141712228 aut Potential theory and geometry on Lie groups N. Th. Varopoulos Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2020 1 Online-Ressource (xxvii, 596 Seiten) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 38 The classification and the first main theorem -- NC-groups -- The B-NB classification -- NB-Groups -- Other classes of locally compact groups -- The geometric theory. An introduction -- The geometric NC-theorem -- Algebra and geometries on C-groups -- The end game in the C-theorem -- The metric classification -- The homotopy and homology classification of connected Lie groups -- The polynomial homology for simply connected soluble groups -- Cohomology on Lie groups Includes bibliographical references and index This book provides a complete and reasonably self-contained account of a new classification of connected Lie groups into two classes. The first part describes the use of tools from potential theory to establish the classification and to show that the analytic and algebraic approaches to the classification are equivalent. Part II covers geometric theory of the same classification and a proof that it is equivalent to the algebraic approach. Part III is a new approach to the geometric classification that requires more advanced geometric technology, namely homotopy, homology and the theory of currents. Using these methods, a more direct, but also more sophisticated, approach to the equivalence of the geometric and algebraic classification is made. Background material is introduced gradually to familiarise readers with ideas from areas such as Lie groups, differential topology and probability, in particular, random walks on groups. Numerous open problems inspire students to explore further Lie groups Geometry Potential theory (Mathematics) Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Geometrie (DE-588)4020236-7 s Potenzialtheorie (DE-588)4046939-6 s DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-1-107-03649-9 New mathematical monographs 38 (DE-604)BV045935264 38 https://doi.org/10.1017/9781139567718 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Varopoulos, N. Th. 1940- Potential theory and geometry on Lie groups New mathematical monographs Lie groups Geometry Potential theory (Mathematics) Potenzialtheorie (DE-588)4046939-6 gnd Lie-Gruppe (DE-588)4035695-4 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4046939-6 (DE-588)4035695-4 (DE-588)4020236-7 |
title | Potential theory and geometry on Lie groups |
title_auth | Potential theory and geometry on Lie groups |
title_exact_search | Potential theory and geometry on Lie groups |
title_exact_search_txtP | Potential theory and geometry on Lie groups |
title_full | Potential theory and geometry on Lie groups N. Th. Varopoulos |
title_fullStr | Potential theory and geometry on Lie groups N. Th. Varopoulos |
title_full_unstemmed | Potential theory and geometry on Lie groups N. Th. Varopoulos |
title_short | Potential theory and geometry on Lie groups |
title_sort | potential theory and geometry on lie groups |
topic | Lie groups Geometry Potential theory (Mathematics) Potenzialtheorie (DE-588)4046939-6 gnd Lie-Gruppe (DE-588)4035695-4 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Lie groups Geometry Potential theory (Mathematics) Potenzialtheorie Lie-Gruppe Geometrie |
url | https://doi.org/10.1017/9781139567718 |
volume_link | (DE-604)BV045935264 |
work_keys_str_mv | AT varopoulosnth potentialtheoryandgeometryonliegroups |