Spectral and Scattering Theory for Ordinary Differential Equations: Vol. I: Sturm–Liouville Equations
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing
2020
Cham Springer |
Ausgabe: | 1st ed. 2020 |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | BTU01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (IX, 379 p) |
ISBN: | 9783030590888 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-030-59088-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046974482 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201103s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030590888 |c Online |9 978-3-030-59088-8 | ||
024 | 7 | |a 10.1007/978-3-030-59088-8 |2 doi | |
035 | |a (ZDB-2-SMA)9783030590888 | ||
035 | |a (OCoLC)1220919294 | ||
035 | |a (DE-599)BVBBV046974482 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-384 |a DE-703 |a DE-739 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bennewitz, Christer |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral and Scattering Theory for Ordinary Differential Equations |b Vol. I: Sturm–Liouville Equations |c by Christer Bennewitz, Malcolm Brown, Rudi Weikard |
250 | |a 1st ed. 2020 | ||
264 | 1 | |a Cham |b Springer International Publishing |c 2020 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (IX, 379 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
650 | 4 | |a Analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Special Functions | |
650 | 4 | |a Mathematical Physics | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Analysis (Mathematics) | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Special functions | |
650 | 4 | |a Mathematical physics | |
700 | 1 | |a Brown, Malcolm |4 aut | |
700 | 1 | |a Weikard, Rudi |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-59087-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-59089-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-59088-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2020_Fremddaten | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032382623 | ||
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-59088-8 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181903460270080 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bennewitz, Christer Brown, Malcolm Weikard, Rudi |
author_facet | Bennewitz, Christer Brown, Malcolm Weikard, Rudi |
author_role | aut aut aut |
author_sort | Bennewitz, Christer |
author_variant | c b cb m b mb r w rw |
building | Verbundindex |
bvnumber | BV046974482 |
classification_rvk | SK 520 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783030590888 (OCoLC)1220919294 (DE-599)BVBBV046974482 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-030-59088-8 |
edition | 1st ed. 2020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03264nmm a2200709zcb4500</leader><controlfield tag="001">BV046974482</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201103s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030590888</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-59088-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-59088-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030590888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220919294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046974482</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bennewitz, Christer</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral and Scattering Theory for Ordinary Differential Equations</subfield><subfield code="b">Vol. I: Sturm–Liouville Equations</subfield><subfield code="c">by Christer Bennewitz, Malcolm Brown, Rudi Weikard</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 379 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brown, Malcolm</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weikard, Rudi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-59087-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-59089-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2020_Fremddaten</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032382623</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-59088-8</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046974482 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:48:14Z |
indexdate | 2024-07-10T08:59:03Z |
institution | BVB |
isbn | 9783030590888 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032382623 |
oclc_num | 1220919294 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 |
physical | 1 Online-Ressource (IX, 379 p) |
psigel | ZDB-2-SMA ZDB-2-SMA_2020_Fremddaten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing Springer |
record_format | marc |
series2 | Universitext |
spelling | Bennewitz, Christer Verfasser aut Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations by Christer Bennewitz, Malcolm Brown, Rudi Weikard 1st ed. 2020 Cham Springer International Publishing 2020 Cham Springer 1 Online-Ressource (IX, 379 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Analysis Operator Theory Special Functions Mathematical Physics Mathematical analysis Analysis (Mathematics) Operator theory Special functions Mathematical physics Brown, Malcolm aut Weikard, Rudi aut Erscheint auch als Druck-Ausgabe 978-3-030-59087-1 Erscheint auch als Druck-Ausgabe 978-3-030-59089-5 https://doi.org/10.1007/978-3-030-59088-8 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bennewitz, Christer Brown, Malcolm Weikard, Rudi Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations Analysis Operator Theory Special Functions Mathematical Physics Mathematical analysis Analysis (Mathematics) Operator theory Special functions Mathematical physics |
title | Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations |
title_auth | Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations |
title_exact_search | Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations |
title_exact_search_txtP | Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations |
title_full | Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations by Christer Bennewitz, Malcolm Brown, Rudi Weikard |
title_fullStr | Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations by Christer Bennewitz, Malcolm Brown, Rudi Weikard |
title_full_unstemmed | Spectral and Scattering Theory for Ordinary Differential Equations Vol. I: Sturm–Liouville Equations by Christer Bennewitz, Malcolm Brown, Rudi Weikard |
title_short | Spectral and Scattering Theory for Ordinary Differential Equations |
title_sort | spectral and scattering theory for ordinary differential equations vol i sturm liouville equations |
title_sub | Vol. I: Sturm–Liouville Equations |
topic | Analysis Operator Theory Special Functions Mathematical Physics Mathematical analysis Analysis (Mathematics) Operator theory Special functions Mathematical physics |
topic_facet | Analysis Operator Theory Special Functions Mathematical Physics Mathematical analysis Analysis (Mathematics) Operator theory Special functions Mathematical physics |
url | https://doi.org/10.1007/978-3-030-59088-8 |
work_keys_str_mv | AT bennewitzchrister spectralandscatteringtheoryforordinarydifferentialequationsvolisturmliouvilleequations AT brownmalcolm spectralandscatteringtheoryforordinarydifferentialequationsvolisturmliouvilleequations AT weikardrudi spectralandscatteringtheoryforordinarydifferentialequationsvolisturmliouvilleequations |