Lectures in algebraic combinatorics: Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2020]
|
Ausgabe: | 1st ed. 2020 |
Schriftenreihe: | Lecture notes in mathematics
volume 2277 |
Schlagworte: | |
Online-Zugang: | DE-634 DE-92 DE-898 DE-861 DE-863 DE-862 DE-523 DE-91 DE-384 DE-19 DE-703 DE-20 DE-824 DE-739 Volltext |
Beschreibung: | 1 Online-Ressource (xiv, 230 Seiten) |
ISBN: | 9783030583736 |
ISSN: | 0075-8434 |
DOI: | 10.1007/978-3-030-58373-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046974362 | ||
003 | DE-604 | ||
005 | 20240730 | ||
007 | cr|uuu---uuuuu | ||
008 | 201103s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030583736 |c Online |9 978-3-030-58373-6 | ||
024 | 7 | |a 10.1007/978-3-030-58373-6 |2 doi | |
035 | |a (ZDB-2-SMA)9783030583736 | ||
035 | |a (ZDB-2-LNM)9783030583736 | ||
035 | |a (OCoLC)1220912951 | ||
035 | |a (DE-599)BVBBV046974362 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-384 |a DE-703 |a DE-739 |a DE-634 | ||
082 | 0 | |a 512.3 |2 23 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Garsia, Adriano Mario |d 1928- |0 (DE-588)1074858115 |4 aut | |
245 | 1 | 0 | |a Lectures in algebraic combinatorics |b Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields |c Adriano M. Garsia, Ömer Eğecioğlu |
264 | 1 | |a Cham |b Springer |c [2020] | |
300 | |a 1 Online-Ressource (xiv, 230 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture notes in mathematics |v volume 2277 |x 0075-8434 | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Commutative Rings and Algebras | |
650 | 4 | |a Algebra | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Group theory | |
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Commutative rings | |
700 | 1 | |a Eğecioğlu, Ömer |d 1954- |0 (DE-588)1137216190 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-58372-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-58374-3 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-58373-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2020_Fremddaten | |
940 | 1 | |q ZDB-2-LNM_2020_Fremddaten | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032382503 | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-634 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-92 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-898 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-861 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-863 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-862 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-523 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-91 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-384 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-19 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-703 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-20 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-824 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-58373-6 |l DE-739 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 856297 |
---|---|
_version_ | 1806528767395364864 |
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Garsia, Adriano Mario 1928- Eğecioğlu, Ömer 1954- |
author_GND | (DE-588)1074858115 (DE-588)1137216190 |
author_facet | Garsia, Adriano Mario 1928- Eğecioğlu, Ömer 1954- |
author_role | aut aut |
author_sort | Garsia, Adriano Mario 1928- |
author_variant | a m g am amg ö e öe |
building | Verbundindex |
bvnumber | BV046974362 |
classification_rvk | SI 850 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (ZDB-2-SMA)9783030583736 (ZDB-2-LNM)9783030583736 (OCoLC)1220912951 (DE-599)BVBBV046974362 |
dewey-full | 512.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.3 |
dewey-search | 512.3 |
dewey-sort | 3512.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-030-58373-6 |
edition | 1st ed. 2020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV046974362</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240730</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201103s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030583736</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-58373-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-58373-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030583736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783030583736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220912951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046974362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garsia, Adriano Mario</subfield><subfield code="d">1928-</subfield><subfield code="0">(DE-588)1074858115</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures in algebraic combinatorics</subfield><subfield code="b">Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields</subfield><subfield code="c">Adriano M. Garsia, Ömer Eğecioğlu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 230 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">volume 2277</subfield><subfield code="x">0075-8434</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eğecioğlu, Ömer</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)1137216190</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-58372-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-58374-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2020_Fremddaten</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2020_Fremddaten</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032382503</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-58373-6</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046974362 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:48:12Z |
indexdate | 2024-08-05T08:41:27Z |
institution | BVB |
isbn | 9783030583736 |
issn | 0075-8434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032382503 |
oclc_num | 1220912951 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-739 DE-634 |
physical | 1 Online-Ressource (xiv, 230 Seiten) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2020_Fremddaten ZDB-2-LNM_2020_Fremddaten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series2 | Lecture notes in mathematics |
spellingShingle | Garsia, Adriano Mario 1928- Eğecioğlu, Ömer 1954- Lectures in algebraic combinatorics Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields Field Theory and Polynomials Group Theory and Generalizations Commutative Rings and Algebras Algebra Field theory (Physics) Group theory Commutative algebra Commutative rings |
title | Lectures in algebraic combinatorics Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields |
title_auth | Lectures in algebraic combinatorics Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields |
title_exact_search | Lectures in algebraic combinatorics Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields |
title_exact_search_txtP | Lectures in Algebraic Combinatorics Young's Construction, Seminormal Representations, SL(2) Representations, Heaps, Basics on Finite Fields |
title_full | Lectures in algebraic combinatorics Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields Adriano M. Garsia, Ömer Eğecioğlu |
title_fullStr | Lectures in algebraic combinatorics Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields Adriano M. Garsia, Ömer Eğecioğlu |
title_full_unstemmed | Lectures in algebraic combinatorics Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields Adriano M. Garsia, Ömer Eğecioğlu |
title_short | Lectures in algebraic combinatorics |
title_sort | lectures in algebraic combinatorics young s construction seminormal representations sl 2 representations heaps basics on finite fields |
title_sub | Young's construction, seminormal representations, SL(2) representations, heaps, basics on finite fields |
topic | Field Theory and Polynomials Group Theory and Generalizations Commutative Rings and Algebras Algebra Field theory (Physics) Group theory Commutative algebra Commutative rings |
topic_facet | Field Theory and Polynomials Group Theory and Generalizations Commutative Rings and Algebras Algebra Field theory (Physics) Group theory Commutative algebra Commutative rings |
url | https://doi.org/10.1007/978-3-030-58373-6 |
work_keys_str_mv | AT garsiaadrianomario lecturesinalgebraiccombinatoricsyoungsconstructionseminormalrepresentationssl2representationsheapsbasicsonfinitefields AT egeciogluomer lecturesinalgebraiccombinatoricsyoungsconstructionseminormalrepresentationssl2representationsheapsbasicsonfinitefields |