Can we be wrong?: the problem of textual evidence in a time of data
This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 Volltext |
Zusammenfassung: | This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment |
Beschreibung: | Title from publisher's bibliographic system (viewed on 21 Sep 2020) |
Beschreibung: | 1 Online-Ressource (78 Seiten) |
ISBN: | 9781108922036 |
DOI: | 10.1017/9781108922036 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046964859 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201028s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108922036 |c Online |9 978-1-108-92203-6 | ||
024 | 7 | |a 10.1017/9781108922036 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108922036 | ||
035 | |a (OCoLC)1220919583 | ||
035 | |a (DE-599)BVBBV046964859 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 801.959 | |
084 | |a ET 760 |0 (DE-625)28031: |2 rvk | ||
100 | 1 | |a Piper, Andrew |d 1973- |0 (DE-588)139203028 |4 aut | |
245 | 1 | 0 | |a Can we be wrong? |b the problem of textual evidence in a time of data |c Andrew Piper |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (78 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 21 Sep 2020) | ||
520 | |a This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment | ||
650 | 4 | |a Criticism, Textual | |
650 | 0 | 7 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evidenz |0 (DE-588)4129356-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Generalisierung |0 (DE-588)4138130-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Textanalyse |0 (DE-588)4194196-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evidenz |0 (DE-588)4129356-3 |D s |
689 | 0 | 1 | |a Generalisierung |0 (DE-588)4138130-0 |D s |
689 | 0 | 2 | |a Textanalyse |0 (DE-588)4194196-2 |D s |
689 | 0 | 3 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Textanalyse |0 (DE-588)4194196-2 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-92620-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108922036 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032373146 | ||
966 | e | |u https://doi.org/10.1017/9781108922036 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108922036 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181886258380800 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Piper, Andrew 1973- |
author_GND | (DE-588)139203028 |
author_facet | Piper, Andrew 1973- |
author_role | aut |
author_sort | Piper, Andrew 1973- |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV046964859 |
classification_rvk | ET 760 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108922036 (OCoLC)1220919583 (DE-599)BVBBV046964859 |
dewey-full | 801.959 |
dewey-hundreds | 800 - Literature (Belles-lettres) and rhetoric |
dewey-ones | 801 - Philosophy and theory |
dewey-raw | 801.959 |
dewey-search | 801.959 |
dewey-sort | 3801.959 |
dewey-tens | 800 - Literature (Belles-lettres) and rhetoric |
discipline | Sprachwissenschaft Literaturwissenschaft |
discipline_str_mv | Sprachwissenschaft Literaturwissenschaft |
doi_str_mv | 10.1017/9781108922036 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03109nmm a2200553zc 4500</leader><controlfield tag="001">BV046964859</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201028s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108922036</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-92203-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108922036</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108922036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220919583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046964859</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">801.959</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ET 760</subfield><subfield code="0">(DE-625)28031:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Piper, Andrew</subfield><subfield code="d">1973-</subfield><subfield code="0">(DE-588)139203028</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can we be wrong?</subfield><subfield code="b">the problem of textual evidence in a time of data</subfield><subfield code="c">Andrew Piper</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (78 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 21 Sep 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Criticism, Textual</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evidenz</subfield><subfield code="0">(DE-588)4129356-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Generalisierung</subfield><subfield code="0">(DE-588)4138130-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Textanalyse</subfield><subfield code="0">(DE-588)4194196-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evidenz</subfield><subfield code="0">(DE-588)4129356-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Generalisierung</subfield><subfield code="0">(DE-588)4138130-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Textanalyse</subfield><subfield code="0">(DE-588)4194196-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Textanalyse</subfield><subfield code="0">(DE-588)4194196-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-92620-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108922036</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032373146</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108922036</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108922036</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046964859 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:45:11Z |
indexdate | 2024-07-10T08:58:47Z |
institution | BVB |
isbn | 9781108922036 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032373146 |
oclc_num | 1220919583 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (78 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Piper, Andrew 1973- (DE-588)139203028 aut Can we be wrong? the problem of textual evidence in a time of data Andrew Piper Cambridge Cambridge University Press 2020 1 Online-Ressource (78 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 21 Sep 2020) This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment Criticism, Textual Computerunterstütztes Verfahren (DE-588)4139030-1 gnd rswk-swf Evidenz (DE-588)4129356-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Generalisierung (DE-588)4138130-0 gnd rswk-swf Textanalyse (DE-588)4194196-2 gnd rswk-swf Evidenz (DE-588)4129356-3 s Generalisierung (DE-588)4138130-0 s Textanalyse (DE-588)4194196-2 s Computerunterstütztes Verfahren (DE-588)4139030-1 s DE-604 Maschinelles Lernen (DE-588)4193754-5 s Erscheint auch als Druck-Ausgabe 978-1-108-92620-1 https://doi.org/10.1017/9781108922036 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Piper, Andrew 1973- Can we be wrong? the problem of textual evidence in a time of data Criticism, Textual Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Evidenz (DE-588)4129356-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Generalisierung (DE-588)4138130-0 gnd Textanalyse (DE-588)4194196-2 gnd |
subject_GND | (DE-588)4139030-1 (DE-588)4129356-3 (DE-588)4193754-5 (DE-588)4138130-0 (DE-588)4194196-2 |
title | Can we be wrong? the problem of textual evidence in a time of data |
title_auth | Can we be wrong? the problem of textual evidence in a time of data |
title_exact_search | Can we be wrong? the problem of textual evidence in a time of data |
title_exact_search_txtP | Can we be wrong? the problem of textual evidence in a time of data |
title_full | Can we be wrong? the problem of textual evidence in a time of data Andrew Piper |
title_fullStr | Can we be wrong? the problem of textual evidence in a time of data Andrew Piper |
title_full_unstemmed | Can we be wrong? the problem of textual evidence in a time of data Andrew Piper |
title_short | Can we be wrong? |
title_sort | can we be wrong the problem of textual evidence in a time of data |
title_sub | the problem of textual evidence in a time of data |
topic | Criticism, Textual Computerunterstütztes Verfahren (DE-588)4139030-1 gnd Evidenz (DE-588)4129356-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Generalisierung (DE-588)4138130-0 gnd Textanalyse (DE-588)4194196-2 gnd |
topic_facet | Criticism, Textual Computerunterstütztes Verfahren Evidenz Maschinelles Lernen Generalisierung Textanalyse |
url | https://doi.org/10.1017/9781108922036 |
work_keys_str_mv | AT piperandrew canwebewrongtheproblemoftextualevidenceinatimeofdata |