One thousand exercises in probability:
This volume of more than 1300 exercises and solutions in probability theory has two roles. It is both a freestanding book of exercises and solutions in probability theory, and a manual for students and teachers covering the exercises and problems in the companion volume Probability Theory and Random...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford, United Kingdom
Oxford University Press
2020
|
Ausgabe: | Third edition |
Schlagworte: | |
Online-Zugang: | FHD01 TUM01 |
Zusammenfassung: | This volume of more than 1300 exercises and solutions in probability theory has two roles. It is both a freestanding book of exercises and solutions in probability theory, and a manual for students and teachers covering the exercises and problems in the companion volume Probability Theory and Random Processes, 4e |
Beschreibung: | 1 Online-Ressource (xii, 580 Seiten) |
ISBN: | 9780192586872 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046952000 | ||
003 | DE-604 | ||
005 | 20210107 | ||
007 | cr|uuu---uuuuu | ||
008 | 201021s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780192586872 |9 978-0-19-258687-2 | ||
035 | |a (OCoLC)1220894603 | ||
035 | |a (DE-599)BVBBV046952000 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-91 | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a MAT 600 |2 stub | ||
100 | 1 | |a Grimmett, Geoffrey |d 1950- |e Verfasser |0 (DE-588)120872919 |4 aut | |
245 | 1 | 0 | |a One thousand exercises in probability |c Geoffrey R. Grimmett and David R. Stirzaker |
250 | |a Third edition | ||
264 | 1 | |a Oxford, United Kingdom |b Oxford University Press |c 2020 | |
300 | |a 1 Online-Ressource (xii, 580 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- One Thousand Exercises in Probability -- Copyright -- Epigraph -- Preface to the Third Edition -- Contents -- Questions -- 1 Events and their probabilities -- 1.2 Exercises. Events as sets -- 1.3 Exercises. Probability -- 1.4 Exercises. Conditional probability -- 1.5 Exercises. Independence -- 1.7 Exercises. Worked examples -- 1.8 Problems -- 2 Random variables and their distributions -- 2.1 Exercises. Random variables -- 2.2 Exercises. The law of averages -- 2.3 Exercises. Discrete and continuous variables -- 2.4 Exercises. Worked examples -- 2.5 Exercises. Random vectors | |
505 | 8 | |a 2.7 Problems -- 3 Discrete random variables -- 3.1 Exercises. Probability mass functions -- 3.2 Exercises. Independence -- 3.3 Exercises. Expectation -- 3.4 Exercises. Indicators and matching -- 3.5 Exercises. Examples of discrete variables -- 3.6 Exercises. Dependence -- 3.7 Exercises. Conditional distributions and conditional expectation -- 3.8 Exercises. Sums of random variables -- 3.9 Exercises. Simple random walk -- 3.10 Exercises. Random walk: counting sample paths -- 3.11 Problems -- 4 Continuous random variables -- 4.1 Exercises. Probability density functions | |
505 | 8 | |a 4.2 Exercises. Independence -- 4.3 Exercises. Expectation -- 4.4 Exercises. Examples of continuous variables -- 4.5 Exercises. Dependence -- 4.6 Exercises. Conditional distributions and conditional expectation -- 4.7 Exercises. Functions of random variables -- 4.8 Exercises. Sums of random variables -- 4.9 Exercises. Multivariate normal distribution -- 4.10 Exercises. Distributions arising from the normal distribution -- 4.11 Exercises. Sampling from a distribution -- 4.12 Exercises. Coupling and Poisson approximation -- 4.13 Exercises. Geometrical probability -- 4.14 Problems | |
505 | 8 | |a 5 Generating functions and their applications -- 5.1 Exercises. Generating functions -- 5.2 Exercises. Some applications -- 5.3 Exercises. Random walk -- 5.4 Exercises. Branching processes -- 5.5 Exercises. Age-dependent branching processes -- 5.6 Exercises. Expectation revisited -- 5.7 Exercises. Characteristic functions -- 5.8 Exercises. Examples of characteristic functions -- 5.9 Exercises. Inversion and continuity theorems -- 5.10 Exercises. Two limit theorems -- 5.11 Exercises. Large deviations -- 5.12 Problems -- 6 Markov chains -- 6.1 Exercises. Markov processes | |
505 | 8 | |a 6.2 Exercises. Classification of states -- 6.3 Exercises. Classification of chains -- 6.4 Exercises. Stationary distributions and the limit theorem -- 6.5 Exercises. Reversibility -- 6.6 Exercises. Chains with finitely many states -- 6.7 Exercises. Branching processes revisited -- 6.8 Exercises. Birth processes and the Poisson process -- 6.9 Exercises. Continuous-time Markov chains -- 6.10 Exercises. Kolmogorov equations and the limit theorem -- 6.11 Exercises. Birth-death processes and imbedding -- 6.12 Exercises. Special processes -- 6.13 Exercises. Spatial Poisson processes | |
505 | 8 | |a 6.14 Exercises. Markov chain Monte Carlo | |
520 | |a This volume of more than 1300 exercises and solutions in probability theory has two roles. It is both a freestanding book of exercises and solutions in probability theory, and a manual for students and teachers covering the exercises and problems in the companion volume Probability Theory and Random Processes, 4e | ||
650 | 4 | |a Probabilities / Problems, exercises, etc | |
650 | 4 | |a Stochastic processes / Problems, exercises, etc | |
650 | 7 | |a Probabilities |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Stirzaker, David |e Verfasser |0 (DE-588)1158150989 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-19-884761-8 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032360498 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6236252 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6236252 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181864661909504 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Grimmett, Geoffrey 1950- Stirzaker, David |
author_GND | (DE-588)120872919 (DE-588)1158150989 |
author_facet | Grimmett, Geoffrey 1950- Stirzaker, David |
author_role | aut aut |
author_sort | Grimmett, Geoffrey 1950- |
author_variant | g g gg d s ds |
building | Verbundindex |
bvnumber | BV046952000 |
classification_rvk | SK 800 |
classification_tum | MAT 600 |
collection | ZDB-30-PQE |
contents | Cover -- One Thousand Exercises in Probability -- Copyright -- Epigraph -- Preface to the Third Edition -- Contents -- Questions -- 1 Events and their probabilities -- 1.2 Exercises. Events as sets -- 1.3 Exercises. Probability -- 1.4 Exercises. Conditional probability -- 1.5 Exercises. Independence -- 1.7 Exercises. Worked examples -- 1.8 Problems -- 2 Random variables and their distributions -- 2.1 Exercises. Random variables -- 2.2 Exercises. The law of averages -- 2.3 Exercises. Discrete and continuous variables -- 2.4 Exercises. Worked examples -- 2.5 Exercises. Random vectors 2.7 Problems -- 3 Discrete random variables -- 3.1 Exercises. Probability mass functions -- 3.2 Exercises. Independence -- 3.3 Exercises. Expectation -- 3.4 Exercises. Indicators and matching -- 3.5 Exercises. Examples of discrete variables -- 3.6 Exercises. Dependence -- 3.7 Exercises. Conditional distributions and conditional expectation -- 3.8 Exercises. Sums of random variables -- 3.9 Exercises. Simple random walk -- 3.10 Exercises. Random walk: counting sample paths -- 3.11 Problems -- 4 Continuous random variables -- 4.1 Exercises. Probability density functions 4.2 Exercises. Independence -- 4.3 Exercises. Expectation -- 4.4 Exercises. Examples of continuous variables -- 4.5 Exercises. Dependence -- 4.6 Exercises. Conditional distributions and conditional expectation -- 4.7 Exercises. Functions of random variables -- 4.8 Exercises. Sums of random variables -- 4.9 Exercises. Multivariate normal distribution -- 4.10 Exercises. Distributions arising from the normal distribution -- 4.11 Exercises. Sampling from a distribution -- 4.12 Exercises. Coupling and Poisson approximation -- 4.13 Exercises. Geometrical probability -- 4.14 Problems 5 Generating functions and their applications -- 5.1 Exercises. Generating functions -- 5.2 Exercises. Some applications -- 5.3 Exercises. Random walk -- 5.4 Exercises. Branching processes -- 5.5 Exercises. Age-dependent branching processes -- 5.6 Exercises. Expectation revisited -- 5.7 Exercises. Characteristic functions -- 5.8 Exercises. Examples of characteristic functions -- 5.9 Exercises. Inversion and continuity theorems -- 5.10 Exercises. Two limit theorems -- 5.11 Exercises. Large deviations -- 5.12 Problems -- 6 Markov chains -- 6.1 Exercises. Markov processes 6.2 Exercises. Classification of states -- 6.3 Exercises. Classification of chains -- 6.4 Exercises. Stationary distributions and the limit theorem -- 6.5 Exercises. Reversibility -- 6.6 Exercises. Chains with finitely many states -- 6.7 Exercises. Branching processes revisited -- 6.8 Exercises. Birth processes and the Poisson process -- 6.9 Exercises. Continuous-time Markov chains -- 6.10 Exercises. Kolmogorov equations and the limit theorem -- 6.11 Exercises. Birth-death processes and imbedding -- 6.12 Exercises. Special processes -- 6.13 Exercises. Spatial Poisson processes 6.14 Exercises. Markov chain Monte Carlo |
ctrlnum | (OCoLC)1220894603 (DE-599)BVBBV046952000 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Third edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05208nmm a2200529 c 4500</leader><controlfield tag="001">BV046952000</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210107 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201021s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780192586872</subfield><subfield code="9">978-0-19-258687-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220894603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046952000</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grimmett, Geoffrey</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120872919</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One thousand exercises in probability</subfield><subfield code="c">Geoffrey R. Grimmett and David R. Stirzaker</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, United Kingdom</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 580 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- One Thousand Exercises in Probability -- Copyright -- Epigraph -- Preface to the Third Edition -- Contents -- Questions -- 1 Events and their probabilities -- 1.2 Exercises. Events as sets -- 1.3 Exercises. Probability -- 1.4 Exercises. Conditional probability -- 1.5 Exercises. Independence -- 1.7 Exercises. Worked examples -- 1.8 Problems -- 2 Random variables and their distributions -- 2.1 Exercises. Random variables -- 2.2 Exercises. The law of averages -- 2.3 Exercises. Discrete and continuous variables -- 2.4 Exercises. Worked examples -- 2.5 Exercises. Random vectors</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.7 Problems -- 3 Discrete random variables -- 3.1 Exercises. Probability mass functions -- 3.2 Exercises. Independence -- 3.3 Exercises. Expectation -- 3.4 Exercises. Indicators and matching -- 3.5 Exercises. Examples of discrete variables -- 3.6 Exercises. Dependence -- 3.7 Exercises. Conditional distributions and conditional expectation -- 3.8 Exercises. Sums of random variables -- 3.9 Exercises. Simple random walk -- 3.10 Exercises. Random walk: counting sample paths -- 3.11 Problems -- 4 Continuous random variables -- 4.1 Exercises. Probability density functions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 Exercises. Independence -- 4.3 Exercises. Expectation -- 4.4 Exercises. Examples of continuous variables -- 4.5 Exercises. Dependence -- 4.6 Exercises. Conditional distributions and conditional expectation -- 4.7 Exercises. Functions of random variables -- 4.8 Exercises. Sums of random variables -- 4.9 Exercises. Multivariate normal distribution -- 4.10 Exercises. Distributions arising from the normal distribution -- 4.11 Exercises. Sampling from a distribution -- 4.12 Exercises. Coupling and Poisson approximation -- 4.13 Exercises. Geometrical probability -- 4.14 Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Generating functions and their applications -- 5.1 Exercises. Generating functions -- 5.2 Exercises. Some applications -- 5.3 Exercises. Random walk -- 5.4 Exercises. Branching processes -- 5.5 Exercises. Age-dependent branching processes -- 5.6 Exercises. Expectation revisited -- 5.7 Exercises. Characteristic functions -- 5.8 Exercises. Examples of characteristic functions -- 5.9 Exercises. Inversion and continuity theorems -- 5.10 Exercises. Two limit theorems -- 5.11 Exercises. Large deviations -- 5.12 Problems -- 6 Markov chains -- 6.1 Exercises. Markov processes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2 Exercises. Classification of states -- 6.3 Exercises. Classification of chains -- 6.4 Exercises. Stationary distributions and the limit theorem -- 6.5 Exercises. Reversibility -- 6.6 Exercises. Chains with finitely many states -- 6.7 Exercises. Branching processes revisited -- 6.8 Exercises. Birth processes and the Poisson process -- 6.9 Exercises. Continuous-time Markov chains -- 6.10 Exercises. Kolmogorov equations and the limit theorem -- 6.11 Exercises. Birth-death processes and imbedding -- 6.12 Exercises. Special processes -- 6.13 Exercises. Spatial Poisson processes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.14 Exercises. Markov chain Monte Carlo</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume of more than 1300 exercises and solutions in probability theory has two roles. It is both a freestanding book of exercises and solutions in probability theory, and a manual for students and teachers covering the exercises and problems in the companion volume Probability Theory and Random Processes, 4e</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stirzaker, David</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1158150989</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-19-884761-8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032360498</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6236252</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6236252</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV046952000 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:41:32Z |
indexdate | 2024-07-10T08:58:26Z |
institution | BVB |
isbn | 9780192586872 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032360498 |
oclc_num | 1220894603 |
open_access_boolean | |
owner | DE-1050 DE-91 DE-BY-TUM |
owner_facet | DE-1050 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 580 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Oxford University Press |
record_format | marc |
spelling | Grimmett, Geoffrey 1950- Verfasser (DE-588)120872919 aut One thousand exercises in probability Geoffrey R. Grimmett and David R. Stirzaker Third edition Oxford, United Kingdom Oxford University Press 2020 1 Online-Ressource (xii, 580 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- One Thousand Exercises in Probability -- Copyright -- Epigraph -- Preface to the Third Edition -- Contents -- Questions -- 1 Events and their probabilities -- 1.2 Exercises. Events as sets -- 1.3 Exercises. Probability -- 1.4 Exercises. Conditional probability -- 1.5 Exercises. Independence -- 1.7 Exercises. Worked examples -- 1.8 Problems -- 2 Random variables and their distributions -- 2.1 Exercises. Random variables -- 2.2 Exercises. The law of averages -- 2.3 Exercises. Discrete and continuous variables -- 2.4 Exercises. Worked examples -- 2.5 Exercises. Random vectors 2.7 Problems -- 3 Discrete random variables -- 3.1 Exercises. Probability mass functions -- 3.2 Exercises. Independence -- 3.3 Exercises. Expectation -- 3.4 Exercises. Indicators and matching -- 3.5 Exercises. Examples of discrete variables -- 3.6 Exercises. Dependence -- 3.7 Exercises. Conditional distributions and conditional expectation -- 3.8 Exercises. Sums of random variables -- 3.9 Exercises. Simple random walk -- 3.10 Exercises. Random walk: counting sample paths -- 3.11 Problems -- 4 Continuous random variables -- 4.1 Exercises. Probability density functions 4.2 Exercises. Independence -- 4.3 Exercises. Expectation -- 4.4 Exercises. Examples of continuous variables -- 4.5 Exercises. Dependence -- 4.6 Exercises. Conditional distributions and conditional expectation -- 4.7 Exercises. Functions of random variables -- 4.8 Exercises. Sums of random variables -- 4.9 Exercises. Multivariate normal distribution -- 4.10 Exercises. Distributions arising from the normal distribution -- 4.11 Exercises. Sampling from a distribution -- 4.12 Exercises. Coupling and Poisson approximation -- 4.13 Exercises. Geometrical probability -- 4.14 Problems 5 Generating functions and their applications -- 5.1 Exercises. Generating functions -- 5.2 Exercises. Some applications -- 5.3 Exercises. Random walk -- 5.4 Exercises. Branching processes -- 5.5 Exercises. Age-dependent branching processes -- 5.6 Exercises. Expectation revisited -- 5.7 Exercises. Characteristic functions -- 5.8 Exercises. Examples of characteristic functions -- 5.9 Exercises. Inversion and continuity theorems -- 5.10 Exercises. Two limit theorems -- 5.11 Exercises. Large deviations -- 5.12 Problems -- 6 Markov chains -- 6.1 Exercises. Markov processes 6.2 Exercises. Classification of states -- 6.3 Exercises. Classification of chains -- 6.4 Exercises. Stationary distributions and the limit theorem -- 6.5 Exercises. Reversibility -- 6.6 Exercises. Chains with finitely many states -- 6.7 Exercises. Branching processes revisited -- 6.8 Exercises. Birth processes and the Poisson process -- 6.9 Exercises. Continuous-time Markov chains -- 6.10 Exercises. Kolmogorov equations and the limit theorem -- 6.11 Exercises. Birth-death processes and imbedding -- 6.12 Exercises. Special processes -- 6.13 Exercises. Spatial Poisson processes 6.14 Exercises. Markov chain Monte Carlo This volume of more than 1300 exercises and solutions in probability theory has two roles. It is both a freestanding book of exercises and solutions in probability theory, and a manual for students and teachers covering the exercises and problems in the companion volume Probability Theory and Random Processes, 4e Probabilities / Problems, exercises, etc Stochastic processes / Problems, exercises, etc Probabilities fast Stochastic processes fast Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf (DE-588)4143389-0 Aufgabensammlung gnd-content Wahrscheinlichkeitstheorie (DE-588)4079013-7 s DE-604 Stirzaker, David Verfasser (DE-588)1158150989 aut Erscheint auch als Druck-Ausgabe 978-0-19-884761-8 |
spellingShingle | Grimmett, Geoffrey 1950- Stirzaker, David One thousand exercises in probability Cover -- One Thousand Exercises in Probability -- Copyright -- Epigraph -- Preface to the Third Edition -- Contents -- Questions -- 1 Events and their probabilities -- 1.2 Exercises. Events as sets -- 1.3 Exercises. Probability -- 1.4 Exercises. Conditional probability -- 1.5 Exercises. Independence -- 1.7 Exercises. Worked examples -- 1.8 Problems -- 2 Random variables and their distributions -- 2.1 Exercises. Random variables -- 2.2 Exercises. The law of averages -- 2.3 Exercises. Discrete and continuous variables -- 2.4 Exercises. Worked examples -- 2.5 Exercises. Random vectors 2.7 Problems -- 3 Discrete random variables -- 3.1 Exercises. Probability mass functions -- 3.2 Exercises. Independence -- 3.3 Exercises. Expectation -- 3.4 Exercises. Indicators and matching -- 3.5 Exercises. Examples of discrete variables -- 3.6 Exercises. Dependence -- 3.7 Exercises. Conditional distributions and conditional expectation -- 3.8 Exercises. Sums of random variables -- 3.9 Exercises. Simple random walk -- 3.10 Exercises. Random walk: counting sample paths -- 3.11 Problems -- 4 Continuous random variables -- 4.1 Exercises. Probability density functions 4.2 Exercises. Independence -- 4.3 Exercises. Expectation -- 4.4 Exercises. Examples of continuous variables -- 4.5 Exercises. Dependence -- 4.6 Exercises. Conditional distributions and conditional expectation -- 4.7 Exercises. Functions of random variables -- 4.8 Exercises. Sums of random variables -- 4.9 Exercises. Multivariate normal distribution -- 4.10 Exercises. Distributions arising from the normal distribution -- 4.11 Exercises. Sampling from a distribution -- 4.12 Exercises. Coupling and Poisson approximation -- 4.13 Exercises. Geometrical probability -- 4.14 Problems 5 Generating functions and their applications -- 5.1 Exercises. Generating functions -- 5.2 Exercises. Some applications -- 5.3 Exercises. Random walk -- 5.4 Exercises. Branching processes -- 5.5 Exercises. Age-dependent branching processes -- 5.6 Exercises. Expectation revisited -- 5.7 Exercises. Characteristic functions -- 5.8 Exercises. Examples of characteristic functions -- 5.9 Exercises. Inversion and continuity theorems -- 5.10 Exercises. Two limit theorems -- 5.11 Exercises. Large deviations -- 5.12 Problems -- 6 Markov chains -- 6.1 Exercises. Markov processes 6.2 Exercises. Classification of states -- 6.3 Exercises. Classification of chains -- 6.4 Exercises. Stationary distributions and the limit theorem -- 6.5 Exercises. Reversibility -- 6.6 Exercises. Chains with finitely many states -- 6.7 Exercises. Branching processes revisited -- 6.8 Exercises. Birth processes and the Poisson process -- 6.9 Exercises. Continuous-time Markov chains -- 6.10 Exercises. Kolmogorov equations and the limit theorem -- 6.11 Exercises. Birth-death processes and imbedding -- 6.12 Exercises. Special processes -- 6.13 Exercises. Spatial Poisson processes 6.14 Exercises. Markov chain Monte Carlo Probabilities / Problems, exercises, etc Stochastic processes / Problems, exercises, etc Probabilities fast Stochastic processes fast Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4079013-7 (DE-588)4143389-0 |
title | One thousand exercises in probability |
title_auth | One thousand exercises in probability |
title_exact_search | One thousand exercises in probability |
title_exact_search_txtP | One thousand exercises in probability |
title_full | One thousand exercises in probability Geoffrey R. Grimmett and David R. Stirzaker |
title_fullStr | One thousand exercises in probability Geoffrey R. Grimmett and David R. Stirzaker |
title_full_unstemmed | One thousand exercises in probability Geoffrey R. Grimmett and David R. Stirzaker |
title_short | One thousand exercises in probability |
title_sort | one thousand exercises in probability |
topic | Probabilities / Problems, exercises, etc Stochastic processes / Problems, exercises, etc Probabilities fast Stochastic processes fast Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Probabilities / Problems, exercises, etc Stochastic processes / Problems, exercises, etc Probabilities Stochastic processes Wahrscheinlichkeitstheorie Aufgabensammlung |
work_keys_str_mv | AT grimmettgeoffrey onethousandexercisesinprobability AT stirzakerdavid onethousandexercisesinprobability |