Laurent Series Rings and Related Rings:
In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2020]
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-898 DE-859 DE-860 DE-706 DE-739 Volltext |
Zusammenfassung: | In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Sep 2020) |
Beschreibung: | 1 online resource (XIV, 136 pages) |
ISBN: | 9783110702248 |
DOI: | 10.1515/9783110702248 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046948550 | ||
003 | DE-604 | ||
005 | 20241113 | ||
007 | cr|uuu---uuuuu | ||
008 | 201020s2020 xx o|||| 00||| eng d | ||
020 | |a 9783110702248 |9 978-3-11-070224-8 | ||
024 | 7 | |a 10.1515/9783110702248 |2 doi | |
035 | |a (ZDB-23-DGG)9783110702248 | ||
035 | |a (OCoLC)1220894455 | ||
035 | |a (DE-599)BVBBV046948550 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-858 |a DE-898 |a DE-706 | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Tuganbaev, Askar |e Verfasser |4 aut | |
245 | 1 | 0 | |a Laurent Series Rings and Related Rings |c Askar Tuganbaev |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 online resource (XIV, 136 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Sep 2020) | ||
520 | |a In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings | ||
546 | |a In English | ||
650 | 4 | |a Laurent-Reihe | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 0 | 7 | |a Laurent-Reihe |0 (DE-588)4192933-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laurent-Reihe |0 (DE-588)4192933-0 |D s |
689 | 0 | 1 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110702163 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110702248 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA20 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032357105 | |
966 | e | |u https://doi.org/10.1515/9783110702248 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248 |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA20 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248?locatt=mode:legacy |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702248 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1815619877634834432 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Tuganbaev, Askar |
author_facet | Tuganbaev, Askar |
author_role | aut |
author_sort | Tuganbaev, Askar |
author_variant | a t at |
building | Verbundindex |
bvnumber | BV046948550 |
classification_rvk | SK 230 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110702248 (OCoLC)1220894455 (DE-599)BVBBV046948550 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9783110702248 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV046948550</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241113</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201020s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110702248</subfield><subfield code="9">978-3-11-070224-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110702248</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110702248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220894455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046948550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tuganbaev, Askar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laurent Series Rings and Related Rings</subfield><subfield code="c">Askar Tuganbaev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (XIV, 136 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Sep 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laurent-Reihe</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laurent-Reihe</subfield><subfield code="0">(DE-588)4192933-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laurent-Reihe</subfield><subfield code="0">(DE-588)4192933-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110702163</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA20</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032357105</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA20</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248?locatt=mode:legacy</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702248</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046948550 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:40:24Z |
indexdate | 2024-11-13T15:00:45Z |
institution | BVB |
isbn | 9783110702248 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032357105 |
oclc_num | 1220894455 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-898 DE-BY-UBR DE-706 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-898 DE-BY-UBR DE-706 |
physical | 1 online resource (XIV, 136 pages) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA20 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA20 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
spelling | Tuganbaev, Askar Verfasser aut Laurent Series Rings and Related Rings Askar Tuganbaev Berlin ; Boston De Gruyter [2020] © 2020 1 online resource (XIV, 136 pages) txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed 28. Sep 2020) In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings In English Laurent-Reihe MATHEMATICS / Mathematical Analysis bisacsh Laurent-Reihe (DE-588)4192933-0 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Laurent-Reihe (DE-588)4192933-0 s Ring Mathematik (DE-588)4128084-2 s DE-604 Erscheint auch als Druck-Ausgabe 9783110702163 https://doi.org/10.1515/9783110702248 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Tuganbaev, Askar Laurent Series Rings and Related Rings Laurent-Reihe MATHEMATICS / Mathematical Analysis bisacsh Laurent-Reihe (DE-588)4192933-0 gnd Ring Mathematik (DE-588)4128084-2 gnd |
subject_GND | (DE-588)4192933-0 (DE-588)4128084-2 |
title | Laurent Series Rings and Related Rings |
title_auth | Laurent Series Rings and Related Rings |
title_exact_search | Laurent Series Rings and Related Rings |
title_exact_search_txtP | Laurent Series Rings and Related Rings |
title_full | Laurent Series Rings and Related Rings Askar Tuganbaev |
title_fullStr | Laurent Series Rings and Related Rings Askar Tuganbaev |
title_full_unstemmed | Laurent Series Rings and Related Rings Askar Tuganbaev |
title_short | Laurent Series Rings and Related Rings |
title_sort | laurent series rings and related rings |
topic | Laurent-Reihe MATHEMATICS / Mathematical Analysis bisacsh Laurent-Reihe (DE-588)4192933-0 gnd Ring Mathematik (DE-588)4128084-2 gnd |
topic_facet | Laurent-Reihe MATHEMATICS / Mathematical Analysis Ring Mathematik |
url | https://doi.org/10.1515/9783110702248 |
work_keys_str_mv | AT tuganbaevaskar laurentseriesringsandrelatedrings |