Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42:
The interplay between analysis on Lie groups and the theory of special functions is well known. This monograph deals with the case of the Heisenberg group and the related expansions in terms of Hermite, special Hermite, and Laguerre functions. The main thrust of the book is to develop a concrete Lit...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2020]
|
Schriftenreihe: | Mathematical Notes
103 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FKE01 FLA01 UPA01 FCO01 Volltext |
Zusammenfassung: | The interplay between analysis on Lie groups and the theory of special functions is well known. This monograph deals with the case of the Heisenberg group and the related expansions in terms of Hermite, special Hermite, and Laguerre functions. The main thrust of the book is to develop a concrete Littlewood-Paley-Stein theory for these expansions and use the theory to prove multiplier theorems. The questions of almost-everywhere and mean convergence of Bochner-Riesz means are also treated. Most of the results in this monograph appear for the first time in book form |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 15. Sep 2020) |
Beschreibung: | 1 online resource (214 pages) |
ISBN: | 9780691213927 |
DOI: | 10.1515/9780691213927 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV046948156 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201020s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780691213927 |9 978-0-691-21392-7 | ||
024 | 7 | |a 10.1515/9780691213927 |2 doi | |
035 | |a (ZDB-23-DGG)9780691213927 | ||
035 | |a (OCoLC)1220915284 | ||
035 | |a (DE-599)BVBBV046948156 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-858 | ||
082 | 0 | |a 515/.55 |2 22 | |
100 | 1 | |a Thangavelu, Sundaram |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 |c Sundaram Thangavelu |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2020] | |
264 | 4 | |c © 1993 | |
300 | |a 1 online resource (214 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Notes |v 103 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 15. Sep 2020) | ||
520 | |a The interplay between analysis on Lie groups and the theory of special functions is well known. This monograph deals with the case of the Heisenberg group and the related expansions in terms of Hermite, special Hermite, and Laguerre functions. The main thrust of the book is to develop a concrete Littlewood-Paley-Stein theory for these expansions and use the theory to prove multiplier theorems. The questions of almost-everywhere and mean convergence of Bochner-Riesz means are also treated. Most of the results in this monograph appear for the first time in book form | ||
546 | |a In English | ||
650 | 4 | |a Asymptotic Properties | |
650 | 4 | |a Corollary | |
650 | 4 | |a Critical Index | |
650 | 4 | |a Fourier transform | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Laguerre Functions | |
650 | 4 | |a Lemma | |
650 | 4 | |a Mehler's formula | |
650 | 4 | |a Multipliers | |
650 | 4 | |a Proposition | |
650 | 4 | |a Radial Functions | |
650 | 4 | |a Restriction Theorem | |
650 | 4 | |a Riesz Transforms | |
650 | 4 | |a Special Hermite | |
650 | 4 | |a Theorem | |
650 | 4 | |a constants | |
650 | 4 | |a formula | |
650 | 4 | |a hypothesis | |
650 | 4 | |a integers | |
650 | 4 | |a operator | |
650 | 4 | |a orthonormal | |
650 | 4 | |a oscillatory integrals | |
650 | 4 | |a transplantation | |
650 | 7 | |a MATHEMATICS / Algebra / Abstract |2 bisacsh | |
650 | 4 | |a Hermite polynomials | |
650 | 4 | |a Laguerre polynomials | |
650 | 4 | |a Representations of groups | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691213927 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032356711 | ||
966 | e | |u https://doi.org/10.1515/9780691213927?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213927?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213927?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213927?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213927?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213927?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213927?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181857349140480 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Thangavelu, Sundaram |
author_facet | Thangavelu, Sundaram |
author_role | aut |
author_sort | Thangavelu, Sundaram |
author_variant | s t st |
building | Verbundindex |
bvnumber | BV046948156 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9780691213927 (OCoLC)1220915284 (DE-599)BVBBV046948156 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9780691213927 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03608nmm a2200781zcb4500</leader><controlfield tag="001">BV046948156</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201020s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691213927</subfield><subfield code="9">978-0-691-21392-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691213927</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691213927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220915284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046948156</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thangavelu, Sundaram</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42</subfield><subfield code="c">Sundaram Thangavelu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (214 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Notes</subfield><subfield code="v">103</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 15. Sep 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The interplay between analysis on Lie groups and the theory of special functions is well known. This monograph deals with the case of the Heisenberg group and the related expansions in terms of Hermite, special Hermite, and Laguerre functions. The main thrust of the book is to develop a concrete Littlewood-Paley-Stein theory for these expansions and use the theory to prove multiplier theorems. The questions of almost-everywhere and mean convergence of Bochner-Riesz means are also treated. Most of the results in this monograph appear for the first time in book form</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corollary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laguerre Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lemma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mehler's formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multipliers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Restriction Theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Hermite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypothesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">orthonormal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oscillatory integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transplantation</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Abstract</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermite polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laguerre polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691213927</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032356711</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213927?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213927?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213927?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213927?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213927?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213927?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213927?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046948156 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:40:23Z |
indexdate | 2024-07-10T08:58:19Z |
institution | BVB |
isbn | 9780691213927 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032356711 |
oclc_num | 1220915284 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-858 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-858 |
physical | 1 online resource (214 pages) |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
series2 | Mathematical Notes |
spelling | Thangavelu, Sundaram Verfasser aut Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 Sundaram Thangavelu Princeton, NJ Princeton University Press [2020] © 1993 1 online resource (214 pages) txt rdacontent c rdamedia cr rdacarrier Mathematical Notes 103 Description based on online resource; title from PDF title page (publisher's Web site, viewed 15. Sep 2020) The interplay between analysis on Lie groups and the theory of special functions is well known. This monograph deals with the case of the Heisenberg group and the related expansions in terms of Hermite, special Hermite, and Laguerre functions. The main thrust of the book is to develop a concrete Littlewood-Paley-Stein theory for these expansions and use the theory to prove multiplier theorems. The questions of almost-everywhere and mean convergence of Bochner-Riesz means are also treated. Most of the results in this monograph appear for the first time in book form In English Asymptotic Properties Corollary Critical Index Fourier transform Harmonic analysis Laguerre Functions Lemma Mehler's formula Multipliers Proposition Radial Functions Restriction Theorem Riesz Transforms Special Hermite Theorem constants formula hypothesis integers operator orthonormal oscillatory integrals transplantation MATHEMATICS / Algebra / Abstract bisacsh Hermite polynomials Laguerre polynomials Representations of groups https://doi.org/10.1515/9780691213927 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Thangavelu, Sundaram Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 Asymptotic Properties Corollary Critical Index Fourier transform Harmonic analysis Laguerre Functions Lemma Mehler's formula Multipliers Proposition Radial Functions Restriction Theorem Riesz Transforms Special Hermite Theorem constants formula hypothesis integers operator orthonormal oscillatory integrals transplantation MATHEMATICS / Algebra / Abstract bisacsh Hermite polynomials Laguerre polynomials Representations of groups |
title | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 |
title_auth | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 |
title_exact_search | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 |
title_exact_search_txtP | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 |
title_full | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 Sundaram Thangavelu |
title_fullStr | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 Sundaram Thangavelu |
title_full_unstemmed | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 Sundaram Thangavelu |
title_short | Lectures on Hermite and Laguerre Expansions. (MN-42), Volume 42 |
title_sort | lectures on hermite and laguerre expansions mn 42 volume 42 |
topic | Asymptotic Properties Corollary Critical Index Fourier transform Harmonic analysis Laguerre Functions Lemma Mehler's formula Multipliers Proposition Radial Functions Restriction Theorem Riesz Transforms Special Hermite Theorem constants formula hypothesis integers operator orthonormal oscillatory integrals transplantation MATHEMATICS / Algebra / Abstract bisacsh Hermite polynomials Laguerre polynomials Representations of groups |
topic_facet | Asymptotic Properties Corollary Critical Index Fourier transform Harmonic analysis Laguerre Functions Lemma Mehler's formula Multipliers Proposition Radial Functions Restriction Theorem Riesz Transforms Special Hermite Theorem constants formula hypothesis integers operator orthonormal oscillatory integrals transplantation MATHEMATICS / Algebra / Abstract Hermite polynomials Laguerre polynomials Representations of groups |
url | https://doi.org/10.1515/9780691213927 |
work_keys_str_mv | AT thangavelusundaram lecturesonhermiteandlaguerreexpansionsmn42volume42 |