Stochastic differential equations with Markovian switching:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
[2006]
|
Schlagworte: | |
Online-Zugang: | TUM01 TUM02 UBM01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 1860947018 1860948847 9781860948848 9781860947018 |
DOI: | 10.1142/p473 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046942483 | ||
003 | DE-604 | ||
005 | 20210429 | ||
007 | cr|uuu---uuuuu | ||
008 | 201015s2006 |||| o||u| ||||||eng d | ||
020 | |a 1860947018 |9 1860947018 | ||
020 | |a 1860948847 |9 1860948847 | ||
020 | |a 9781860948848 |9 978-186-094884-8 | ||
020 | |a 9781860947018 |9 9781860947018 | ||
024 | 7 | |a 10.1142/p473 |2 doi | |
024 | 3 | |a 9781860947018 | |
035 | |a (OCoLC)1220908671 | ||
035 | |a (DE-599)BVBBV046942483 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-19 | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 606 |2 stub | ||
100 | 1 | |a Mao, Xuerong |d 1957- |e Verfasser |0 (DE-588)1145722040 |4 aut | |
245 | 1 | 0 | |a Stochastic differential equations with Markovian switching |c Xuerong Mao, Chenggui Yuan |
264 | 1 | |a London |b Imperial College Press |c [2006] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Intro; Contents; Preface; Notation; 1. Brownian Motions and Stochastic Integrals; 1.1 Introduction; 1.2 Basic Notations of Probability Theory; 1.3 Stochastic Processes; 1.4 Brownian Motions; 1.5 Stochastic Integrals; 1.6 Ito's Formula; 1.7 Markov Processes; 1.8 Generalised Ito's Formula; 1.9 Exercises; 2. Inequalities; 2.1 Introduction; 2.2 Frequently Used Inequalities; 2.3 Gronwall-Type Inequalities; 2.4 Matrices and Inequalities; 2.5 Linear Matrix Inequalities; 2.6 M-Matrix Inequalities; 2.7 Stochastic Inequalities; 2.8 Exercises | |
505 | 8 | |a 3. Stochastic Differential Equations with Markovian Switching3.1 Introduction; 3.2 Stochastic Differential Equations; 3.3 Existence and Uniqueness of Solutions; 3.4 SDEs with Markovian Switching; 3.5 Lp-Estimates; 3.6 Almost Surely Asymptotic Estimates; 3.7 Solutions as Markov Processes; 3.8 Exercises; 4. Approximate Solutions; 4.1 Introduction; 4.2 Euler-Maruyama's Approximations; 4.2.1 Global Lipschitz Case; 4.2.2 Local Lipschitz Case; 4.2.3 More on Local Lipschitz Case; 4.3 Caratheodory's Approximations; 4.4 Split-Step Backward Euler Scheme; 4.5 Backward Euler Scheme | |
505 | 8 | |a 4.6 Stochastic Theta Method4.7 Exercises; 5. Boundedness and Stability; 5.1 Introduction; 5.2 Asymptotic Boundedness; 5.3 Exponential Stability; 5.3.1 Nonlinear Jump Systems; 5.3.2 Multi-Dimensional Linear Equations; 5.3.3 Scalar Linear Equations; 5.3.4 Examples; 5.4 Moment and Almost Sure Asymptotic Stability; 5.5 Stability in Probability; 5.6 Asymptotic Stability in Distribution; 5.7 Exercises; 6. Numerical Methods for Asymptotic Properties; 6.1 Introduction; 6.2 Euler-Maruyama's Method and Exponential Stability; 6.3 Euler-Maruyama's Method and Lyapunov Exponents | |
505 | 8 | |a 6.4 Generalised Results and Stochastic Theta Method6.5 Asymptotic Stability in Distribution of the EM Method: Constant Step Size; 6.5.1 Stability in Distribution of the EM Method; 6.5.2 Sufficient Criteria for Assumptions 6.16-6.18; 6.5.3 Convergence of Stationary Distributions; 6.6 Asymptotic Stability in Distribution of the EM Method: Variable Step Sizes; 6.7 Exercises; 7. Stochastic Differential Delay Equations with Markovian Switching; 7.1 Introduction; 7.2 Stochastic Differential Delay Equations; 7.3 SDDEs with Markovian Switching; 7.4 Moment Properties; 7.5 Asymptotic Boundedness | |
505 | 8 | |a 7.6 Exponential Stability7.7 Approximate Solutions; 7.8 Exercises; 8. Stochastic Functional Differential Equations with Markovian Switching; 8.1 Introduction; 8.2 Stochastic Functional Differential Equations; 8.3 SFDEs with Markovian Switching; 8.4 Boundedness; 8.5 Asymptotic Stability; 8.6 Razumikhin-Type Theorems on Stability; 8.7 Examples; 8.8 Exercises; 9. Stochastic Interval Systems with Markovian Switching; 9.1 Introduction; 9.2 Interval Matrices; 9.3 SDISs with Markovian Switching; 9.4 Razumikhin Technology on SDISs; 9.4.1 Delay Independent Criteria; 9.4.2 Delay Dependent Criteria | |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Prozess |0 (DE-588)4134948-9 |2 gnd |9 rswk-swf |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | 1 | |a Markov-Prozess |0 (DE-588)4134948-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yuan, Chenggui |e Verfasser |0 (DE-588)1041769113 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Mao, Xuerong |t Stochastic differential equations with Markovian switching |d London : Imperial College Press, ©2006 |n Druck-Ausgabe |z 978-1-86094-701-8 |
856 | 4 | 0 | |u https://doi.org/10.1142/p473 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032351165 | ||
966 | e | |u https://doi.org/10.1142/p473 |l TUM01 |p ZDB-124-WOP |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/p473 |l TUM02 |p ZDB-124-WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/p473 |l UBM01 |p ZDB-124-WOP |q UBM_PDA_WOP_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181845923856384 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mao, Xuerong 1957- Yuan, Chenggui |
author_GND | (DE-588)1145722040 (DE-588)1041769113 |
author_facet | Mao, Xuerong 1957- Yuan, Chenggui |
author_role | aut aut |
author_sort | Mao, Xuerong 1957- |
author_variant | x m xm c y cy |
building | Verbundindex |
bvnumber | BV046942483 |
classification_rvk | SK 820 |
classification_tum | MAT 606 |
collection | ZDB-124-WOP |
contents | Intro; Contents; Preface; Notation; 1. Brownian Motions and Stochastic Integrals; 1.1 Introduction; 1.2 Basic Notations of Probability Theory; 1.3 Stochastic Processes; 1.4 Brownian Motions; 1.5 Stochastic Integrals; 1.6 Ito's Formula; 1.7 Markov Processes; 1.8 Generalised Ito's Formula; 1.9 Exercises; 2. Inequalities; 2.1 Introduction; 2.2 Frequently Used Inequalities; 2.3 Gronwall-Type Inequalities; 2.4 Matrices and Inequalities; 2.5 Linear Matrix Inequalities; 2.6 M-Matrix Inequalities; 2.7 Stochastic Inequalities; 2.8 Exercises 3. Stochastic Differential Equations with Markovian Switching3.1 Introduction; 3.2 Stochastic Differential Equations; 3.3 Existence and Uniqueness of Solutions; 3.4 SDEs with Markovian Switching; 3.5 Lp-Estimates; 3.6 Almost Surely Asymptotic Estimates; 3.7 Solutions as Markov Processes; 3.8 Exercises; 4. Approximate Solutions; 4.1 Introduction; 4.2 Euler-Maruyama's Approximations; 4.2.1 Global Lipschitz Case; 4.2.2 Local Lipschitz Case; 4.2.3 More on Local Lipschitz Case; 4.3 Caratheodory's Approximations; 4.4 Split-Step Backward Euler Scheme; 4.5 Backward Euler Scheme 4.6 Stochastic Theta Method4.7 Exercises; 5. Boundedness and Stability; 5.1 Introduction; 5.2 Asymptotic Boundedness; 5.3 Exponential Stability; 5.3.1 Nonlinear Jump Systems; 5.3.2 Multi-Dimensional Linear Equations; 5.3.3 Scalar Linear Equations; 5.3.4 Examples; 5.4 Moment and Almost Sure Asymptotic Stability; 5.5 Stability in Probability; 5.6 Asymptotic Stability in Distribution; 5.7 Exercises; 6. Numerical Methods for Asymptotic Properties; 6.1 Introduction; 6.2 Euler-Maruyama's Method and Exponential Stability; 6.3 Euler-Maruyama's Method and Lyapunov Exponents 6.4 Generalised Results and Stochastic Theta Method6.5 Asymptotic Stability in Distribution of the EM Method: Constant Step Size; 6.5.1 Stability in Distribution of the EM Method; 6.5.2 Sufficient Criteria for Assumptions 6.16-6.18; 6.5.3 Convergence of Stationary Distributions; 6.6 Asymptotic Stability in Distribution of the EM Method: Variable Step Sizes; 6.7 Exercises; 7. Stochastic Differential Delay Equations with Markovian Switching; 7.1 Introduction; 7.2 Stochastic Differential Delay Equations; 7.3 SDDEs with Markovian Switching; 7.4 Moment Properties; 7.5 Asymptotic Boundedness 7.6 Exponential Stability7.7 Approximate Solutions; 7.8 Exercises; 8. Stochastic Functional Differential Equations with Markovian Switching; 8.1 Introduction; 8.2 Stochastic Functional Differential Equations; 8.3 SFDEs with Markovian Switching; 8.4 Boundedness; 8.5 Asymptotic Stability; 8.6 Razumikhin-Type Theorems on Stability; 8.7 Examples; 8.8 Exercises; 9. Stochastic Interval Systems with Markovian Switching; 9.1 Introduction; 9.2 Interval Matrices; 9.3 SDISs with Markovian Switching; 9.4 Razumikhin Technology on SDISs; 9.4.1 Delay Independent Criteria; 9.4.2 Delay Dependent Criteria |
ctrlnum | (OCoLC)1220908671 (DE-599)BVBBV046942483 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1142/p473 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04998nmm a2200553 c 4500</leader><controlfield tag="001">BV046942483</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210429 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201015s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860947018</subfield><subfield code="9">1860947018</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860948847</subfield><subfield code="9">1860948847</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860948848</subfield><subfield code="9">978-186-094884-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860947018</subfield><subfield code="9">9781860947018</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/p473</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781860947018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220908671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046942483</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mao, Xuerong</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1145722040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic differential equations with Markovian switching</subfield><subfield code="c">Xuerong Mao, Chenggui Yuan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">[2006]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro; Contents; Preface; Notation; 1. Brownian Motions and Stochastic Integrals; 1.1 Introduction; 1.2 Basic Notations of Probability Theory; 1.3 Stochastic Processes; 1.4 Brownian Motions; 1.5 Stochastic Integrals; 1.6 Ito's Formula; 1.7 Markov Processes; 1.8 Generalised Ito's Formula; 1.9 Exercises; 2. Inequalities; 2.1 Introduction; 2.2 Frequently Used Inequalities; 2.3 Gronwall-Type Inequalities; 2.4 Matrices and Inequalities; 2.5 Linear Matrix Inequalities; 2.6 M-Matrix Inequalities; 2.7 Stochastic Inequalities; 2.8 Exercises</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Stochastic Differential Equations with Markovian Switching3.1 Introduction; 3.2 Stochastic Differential Equations; 3.3 Existence and Uniqueness of Solutions; 3.4 SDEs with Markovian Switching; 3.5 Lp-Estimates; 3.6 Almost Surely Asymptotic Estimates; 3.7 Solutions as Markov Processes; 3.8 Exercises; 4. Approximate Solutions; 4.1 Introduction; 4.2 Euler-Maruyama's Approximations; 4.2.1 Global Lipschitz Case; 4.2.2 Local Lipschitz Case; 4.2.3 More on Local Lipschitz Case; 4.3 Caratheodory's Approximations; 4.4 Split-Step Backward Euler Scheme; 4.5 Backward Euler Scheme</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6 Stochastic Theta Method4.7 Exercises; 5. Boundedness and Stability; 5.1 Introduction; 5.2 Asymptotic Boundedness; 5.3 Exponential Stability; 5.3.1 Nonlinear Jump Systems; 5.3.2 Multi-Dimensional Linear Equations; 5.3.3 Scalar Linear Equations; 5.3.4 Examples; 5.4 Moment and Almost Sure Asymptotic Stability; 5.5 Stability in Probability; 5.6 Asymptotic Stability in Distribution; 5.7 Exercises; 6. Numerical Methods for Asymptotic Properties; 6.1 Introduction; 6.2 Euler-Maruyama's Method and Exponential Stability; 6.3 Euler-Maruyama's Method and Lyapunov Exponents</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4 Generalised Results and Stochastic Theta Method6.5 Asymptotic Stability in Distribution of the EM Method: Constant Step Size; 6.5.1 Stability in Distribution of the EM Method; 6.5.2 Sufficient Criteria for Assumptions 6.16-6.18; 6.5.3 Convergence of Stationary Distributions; 6.6 Asymptotic Stability in Distribution of the EM Method: Variable Step Sizes; 6.7 Exercises; 7. Stochastic Differential Delay Equations with Markovian Switching; 7.1 Introduction; 7.2 Stochastic Differential Delay Equations; 7.3 SDDEs with Markovian Switching; 7.4 Moment Properties; 7.5 Asymptotic Boundedness</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.6 Exponential Stability7.7 Approximate Solutions; 7.8 Exercises; 8. Stochastic Functional Differential Equations with Markovian Switching; 8.1 Introduction; 8.2 Stochastic Functional Differential Equations; 8.3 SFDEs with Markovian Switching; 8.4 Boundedness; 8.5 Asymptotic Stability; 8.6 Razumikhin-Type Theorems on Stability; 8.7 Examples; 8.8 Exercises; 9. Stochastic Interval Systems with Markovian Switching; 9.1 Introduction; 9.2 Interval Matrices; 9.3 SDISs with Markovian Switching; 9.4 Razumikhin Technology on SDISs; 9.4.1 Delay Independent Criteria; 9.4.2 Delay Dependent Criteria</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Chenggui</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1041769113</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Mao, Xuerong</subfield><subfield code="t">Stochastic differential equations with Markovian switching</subfield><subfield code="d">London : Imperial College Press, ©2006</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-86094-701-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/p473</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032351165</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/p473</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/p473</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/p473</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">UBM_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046942483 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:38:35Z |
indexdate | 2024-07-10T08:58:08Z |
institution | BVB |
isbn | 1860947018 1860948847 9781860948848 9781860947018 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032351165 |
oclc_num | 1220908671 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM |
physical | 1 Online-Ressource |
psigel | ZDB-124-WOP ZDB-124-WOP TUM_Einzelkauf ZDB-124-WOP UBM_PDA_WOP_Kauf |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Imperial College Press |
record_format | marc |
spelling | Mao, Xuerong 1957- Verfasser (DE-588)1145722040 aut Stochastic differential equations with Markovian switching Xuerong Mao, Chenggui Yuan London Imperial College Press [2006] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Intro; Contents; Preface; Notation; 1. Brownian Motions and Stochastic Integrals; 1.1 Introduction; 1.2 Basic Notations of Probability Theory; 1.3 Stochastic Processes; 1.4 Brownian Motions; 1.5 Stochastic Integrals; 1.6 Ito's Formula; 1.7 Markov Processes; 1.8 Generalised Ito's Formula; 1.9 Exercises; 2. Inequalities; 2.1 Introduction; 2.2 Frequently Used Inequalities; 2.3 Gronwall-Type Inequalities; 2.4 Matrices and Inequalities; 2.5 Linear Matrix Inequalities; 2.6 M-Matrix Inequalities; 2.7 Stochastic Inequalities; 2.8 Exercises 3. Stochastic Differential Equations with Markovian Switching3.1 Introduction; 3.2 Stochastic Differential Equations; 3.3 Existence and Uniqueness of Solutions; 3.4 SDEs with Markovian Switching; 3.5 Lp-Estimates; 3.6 Almost Surely Asymptotic Estimates; 3.7 Solutions as Markov Processes; 3.8 Exercises; 4. Approximate Solutions; 4.1 Introduction; 4.2 Euler-Maruyama's Approximations; 4.2.1 Global Lipschitz Case; 4.2.2 Local Lipschitz Case; 4.2.3 More on Local Lipschitz Case; 4.3 Caratheodory's Approximations; 4.4 Split-Step Backward Euler Scheme; 4.5 Backward Euler Scheme 4.6 Stochastic Theta Method4.7 Exercises; 5. Boundedness and Stability; 5.1 Introduction; 5.2 Asymptotic Boundedness; 5.3 Exponential Stability; 5.3.1 Nonlinear Jump Systems; 5.3.2 Multi-Dimensional Linear Equations; 5.3.3 Scalar Linear Equations; 5.3.4 Examples; 5.4 Moment and Almost Sure Asymptotic Stability; 5.5 Stability in Probability; 5.6 Asymptotic Stability in Distribution; 5.7 Exercises; 6. Numerical Methods for Asymptotic Properties; 6.1 Introduction; 6.2 Euler-Maruyama's Method and Exponential Stability; 6.3 Euler-Maruyama's Method and Lyapunov Exponents 6.4 Generalised Results and Stochastic Theta Method6.5 Asymptotic Stability in Distribution of the EM Method: Constant Step Size; 6.5.1 Stability in Distribution of the EM Method; 6.5.2 Sufficient Criteria for Assumptions 6.16-6.18; 6.5.3 Convergence of Stationary Distributions; 6.6 Asymptotic Stability in Distribution of the EM Method: Variable Step Sizes; 6.7 Exercises; 7. Stochastic Differential Delay Equations with Markovian Switching; 7.1 Introduction; 7.2 Stochastic Differential Delay Equations; 7.3 SDDEs with Markovian Switching; 7.4 Moment Properties; 7.5 Asymptotic Boundedness 7.6 Exponential Stability7.7 Approximate Solutions; 7.8 Exercises; 8. Stochastic Functional Differential Equations with Markovian Switching; 8.1 Introduction; 8.2 Stochastic Functional Differential Equations; 8.3 SFDEs with Markovian Switching; 8.4 Boundedness; 8.5 Asymptotic Stability; 8.6 Razumikhin-Type Theorems on Stability; 8.7 Examples; 8.8 Exercises; 9. Stochastic Interval Systems with Markovian Switching; 9.1 Introduction; 9.2 Interval Matrices; 9.3 SDISs with Markovian Switching; 9.4 Razumikhin Technology on SDISs; 9.4.1 Delay Independent Criteria; 9.4.2 Delay Dependent Criteria Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Markov-Prozess (DE-588)4134948-9 gnd rswk-swf Electronic books Stochastische Differentialgleichung (DE-588)4057621-8 s Markov-Prozess (DE-588)4134948-9 s DE-604 Yuan, Chenggui Verfasser (DE-588)1041769113 aut Erscheint auch als Mao, Xuerong Stochastic differential equations with Markovian switching London : Imperial College Press, ©2006 Druck-Ausgabe 978-1-86094-701-8 https://doi.org/10.1142/p473 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mao, Xuerong 1957- Yuan, Chenggui Stochastic differential equations with Markovian switching Intro; Contents; Preface; Notation; 1. Brownian Motions and Stochastic Integrals; 1.1 Introduction; 1.2 Basic Notations of Probability Theory; 1.3 Stochastic Processes; 1.4 Brownian Motions; 1.5 Stochastic Integrals; 1.6 Ito's Formula; 1.7 Markov Processes; 1.8 Generalised Ito's Formula; 1.9 Exercises; 2. Inequalities; 2.1 Introduction; 2.2 Frequently Used Inequalities; 2.3 Gronwall-Type Inequalities; 2.4 Matrices and Inequalities; 2.5 Linear Matrix Inequalities; 2.6 M-Matrix Inequalities; 2.7 Stochastic Inequalities; 2.8 Exercises 3. Stochastic Differential Equations with Markovian Switching3.1 Introduction; 3.2 Stochastic Differential Equations; 3.3 Existence and Uniqueness of Solutions; 3.4 SDEs with Markovian Switching; 3.5 Lp-Estimates; 3.6 Almost Surely Asymptotic Estimates; 3.7 Solutions as Markov Processes; 3.8 Exercises; 4. Approximate Solutions; 4.1 Introduction; 4.2 Euler-Maruyama's Approximations; 4.2.1 Global Lipschitz Case; 4.2.2 Local Lipschitz Case; 4.2.3 More on Local Lipschitz Case; 4.3 Caratheodory's Approximations; 4.4 Split-Step Backward Euler Scheme; 4.5 Backward Euler Scheme 4.6 Stochastic Theta Method4.7 Exercises; 5. Boundedness and Stability; 5.1 Introduction; 5.2 Asymptotic Boundedness; 5.3 Exponential Stability; 5.3.1 Nonlinear Jump Systems; 5.3.2 Multi-Dimensional Linear Equations; 5.3.3 Scalar Linear Equations; 5.3.4 Examples; 5.4 Moment and Almost Sure Asymptotic Stability; 5.5 Stability in Probability; 5.6 Asymptotic Stability in Distribution; 5.7 Exercises; 6. Numerical Methods for Asymptotic Properties; 6.1 Introduction; 6.2 Euler-Maruyama's Method and Exponential Stability; 6.3 Euler-Maruyama's Method and Lyapunov Exponents 6.4 Generalised Results and Stochastic Theta Method6.5 Asymptotic Stability in Distribution of the EM Method: Constant Step Size; 6.5.1 Stability in Distribution of the EM Method; 6.5.2 Sufficient Criteria for Assumptions 6.16-6.18; 6.5.3 Convergence of Stationary Distributions; 6.6 Asymptotic Stability in Distribution of the EM Method: Variable Step Sizes; 6.7 Exercises; 7. Stochastic Differential Delay Equations with Markovian Switching; 7.1 Introduction; 7.2 Stochastic Differential Delay Equations; 7.3 SDDEs with Markovian Switching; 7.4 Moment Properties; 7.5 Asymptotic Boundedness 7.6 Exponential Stability7.7 Approximate Solutions; 7.8 Exercises; 8. Stochastic Functional Differential Equations with Markovian Switching; 8.1 Introduction; 8.2 Stochastic Functional Differential Equations; 8.3 SFDEs with Markovian Switching; 8.4 Boundedness; 8.5 Asymptotic Stability; 8.6 Razumikhin-Type Theorems on Stability; 8.7 Examples; 8.8 Exercises; 9. Stochastic Interval Systems with Markovian Switching; 9.1 Introduction; 9.2 Interval Matrices; 9.3 SDISs with Markovian Switching; 9.4 Razumikhin Technology on SDISs; 9.4.1 Delay Independent Criteria; 9.4.2 Delay Dependent Criteria Stochastische Differentialgleichung (DE-588)4057621-8 gnd Markov-Prozess (DE-588)4134948-9 gnd |
subject_GND | (DE-588)4057621-8 (DE-588)4134948-9 |
title | Stochastic differential equations with Markovian switching |
title_auth | Stochastic differential equations with Markovian switching |
title_exact_search | Stochastic differential equations with Markovian switching |
title_exact_search_txtP | Stochastic differential equations with Markovian switching |
title_full | Stochastic differential equations with Markovian switching Xuerong Mao, Chenggui Yuan |
title_fullStr | Stochastic differential equations with Markovian switching Xuerong Mao, Chenggui Yuan |
title_full_unstemmed | Stochastic differential equations with Markovian switching Xuerong Mao, Chenggui Yuan |
title_short | Stochastic differential equations with Markovian switching |
title_sort | stochastic differential equations with markovian switching |
topic | Stochastische Differentialgleichung (DE-588)4057621-8 gnd Markov-Prozess (DE-588)4134948-9 gnd |
topic_facet | Stochastische Differentialgleichung Markov-Prozess |
url | https://doi.org/10.1142/p473 |
work_keys_str_mv | AT maoxuerong stochasticdifferentialequationswithmarkovianswitching AT yuanchenggui stochasticdifferentialequationswithmarkovianswitching |