Matrix positivity:
Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of applications, and many have also taken on notable theoretical significance, either because they are natural or unifying. This is the first book to prov...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge Tracts in Mathematics
221 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 UBA01 Volltext |
Zusammenfassung: | Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of applications, and many have also taken on notable theoretical significance, either because they are natural or unifying. This is the first book to provide a comprehensive and up-to-date reference of important material on matrix positivity classes, their properties, and their relations. The matrix classes emphasized in this book include the classes of semipositive matrices, P-matrices, inverse M-matrices, and copositive matrices. This self-contained reference will be useful to a large variety of mathematicians, engineers, and social scientists, as well as graduate students. The generalizations of positivity and the connections observed provide a unique perspective, along with theoretical insight into applications and future challenges. Direct applications can be found in data analysis, differential equations, mathematical programming, computational complexity, models of the economy, population biology, dynamical systems and control theory |
Beschreibung: | 1 Online-Ressource (xiv, 208 Seiten) |
ISBN: | 9781108778619 |
DOI: | 10.1017/9781108778619 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046925121 | ||
003 | DE-604 | ||
005 | 20230907 | ||
007 | cr|uuu---uuuuu | ||
008 | 201005s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108778619 |c Online |9 978-1-108-77861-9 | ||
024 | 7 | |a 10.1017/9781108778619 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108778619 | ||
035 | |a (OCoLC)1199062529 | ||
035 | |a (DE-599)BVBBV046925121 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 |a DE-91 | ||
082 | 0 | |a 512.9/434 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a MAT 150 |2 stub | ||
100 | 1 | |a Johnson, Charles R. |d 1948- |e Verfasser |0 (DE-588)143876384 |4 aut | |
245 | 1 | 0 | |a Matrix positivity |c Charles R. Johnson (College of William and Mary), Ronald L. Smith (University of Tennessee at Chattanooga), Michael J. Tsatsomeros (Washington State University) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xiv, 208 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge Tracts in Mathematics |v 221 | |
520 | |a Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of applications, and many have also taken on notable theoretical significance, either because they are natural or unifying. This is the first book to provide a comprehensive and up-to-date reference of important material on matrix positivity classes, their properties, and their relations. The matrix classes emphasized in this book include the classes of semipositive matrices, P-matrices, inverse M-matrices, and copositive matrices. This self-contained reference will be useful to a large variety of mathematicians, engineers, and social scientists, as well as graduate students. The generalizations of positivity and the connections observed provide a unique perspective, along with theoretical insight into applications and future challenges. Direct applications can be found in data analysis, differential equations, mathematical programming, computational complexity, models of the economy, population biology, dynamical systems and control theory | ||
650 | 4 | |a Matrices | |
650 | 0 | 7 | |a Positive Matrix |0 (DE-588)7696958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | 1 | |a Positive Matrix |0 (DE-588)7696958-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Smith, Ronald L. |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1218632720 |4 aut | |
700 | 1 | |a Tsatsomeros, Michael |d 1961- |e Verfasser |0 (DE-588)1218632887 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-47871-7 |
830 | 0 | |a Cambridge Tracts in Mathematics |v 221 |w (DE-604)BV047362617 |9 221 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108778619 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032334243 | ||
966 | e | |u https://doi.org/10.1017/9781108778619 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778619 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6360471 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778619 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181815482646528 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Johnson, Charles R. 1948- Smith, Ronald L. ca. 20./21. Jh Tsatsomeros, Michael 1961- |
author_GND | (DE-588)143876384 (DE-588)1218632720 (DE-588)1218632887 |
author_facet | Johnson, Charles R. 1948- Smith, Ronald L. ca. 20./21. Jh Tsatsomeros, Michael 1961- |
author_role | aut aut aut |
author_sort | Johnson, Charles R. 1948- |
author_variant | c r j cr crj r l s rl rls m t mt |
building | Verbundindex |
bvnumber | BV046925121 |
classification_rvk | SK 220 |
classification_tum | MAT 150 |
collection | ZDB-20-CBO ZDB-30-PQE |
ctrlnum | (ZDB-20-CBO)CR9781108778619 (OCoLC)1199062529 (DE-599)BVBBV046925121 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108778619 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03490nmm a2200529 cb4500</leader><controlfield tag="001">BV046925121</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230907 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201005s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108778619</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-77861-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108778619</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108778619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1199062529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046925121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Charles R.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143876384</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix positivity</subfield><subfield code="c">Charles R. Johnson (College of William and Mary), Ronald L. Smith (University of Tennessee at Chattanooga), Michael J. Tsatsomeros (Washington State University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 208 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge Tracts in Mathematics</subfield><subfield code="v">221</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of applications, and many have also taken on notable theoretical significance, either because they are natural or unifying. This is the first book to provide a comprehensive and up-to-date reference of important material on matrix positivity classes, their properties, and their relations. The matrix classes emphasized in this book include the classes of semipositive matrices, P-matrices, inverse M-matrices, and copositive matrices. This self-contained reference will be useful to a large variety of mathematicians, engineers, and social scientists, as well as graduate students. The generalizations of positivity and the connections observed provide a unique perspective, along with theoretical insight into applications and future challenges. Direct applications can be found in data analysis, differential equations, mathematical programming, computational complexity, models of the economy, population biology, dynamical systems and control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Positive Matrix</subfield><subfield code="0">(DE-588)7696958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Positive Matrix</subfield><subfield code="0">(DE-588)7696958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Ronald L.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1218632720</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsatsomeros, Michael</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1218632887</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-47871-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge Tracts in Mathematics</subfield><subfield code="v">221</subfield><subfield code="w">(DE-604)BV047362617</subfield><subfield code="9">221</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108778619</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032334243</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778619</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778619</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6360471</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778619</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046925121 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:32:39Z |
indexdate | 2024-07-10T08:57:39Z |
institution | BVB |
isbn | 9781108778619 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032334243 |
oclc_num | 1199062529 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 DE-91 DE-BY-TUM |
owner_facet | DE-384 DE-12 DE-92 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 208 Seiten) |
psigel | ZDB-20-CBO ZDB-30-PQE ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge Tracts in Mathematics |
series2 | Cambridge Tracts in Mathematics |
spelling | Johnson, Charles R. 1948- Verfasser (DE-588)143876384 aut Matrix positivity Charles R. Johnson (College of William and Mary), Ronald L. Smith (University of Tennessee at Chattanooga), Michael J. Tsatsomeros (Washington State University) Cambridge Cambridge University Press 2020 1 Online-Ressource (xiv, 208 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge Tracts in Mathematics 221 Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of applications, and many have also taken on notable theoretical significance, either because they are natural or unifying. This is the first book to provide a comprehensive and up-to-date reference of important material on matrix positivity classes, their properties, and their relations. The matrix classes emphasized in this book include the classes of semipositive matrices, P-matrices, inverse M-matrices, and copositive matrices. This self-contained reference will be useful to a large variety of mathematicians, engineers, and social scientists, as well as graduate students. The generalizations of positivity and the connections observed provide a unique perspective, along with theoretical insight into applications and future challenges. Direct applications can be found in data analysis, differential equations, mathematical programming, computational complexity, models of the economy, population biology, dynamical systems and control theory Matrices Positive Matrix (DE-588)7696958-7 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 s Positive Matrix (DE-588)7696958-7 s DE-604 Smith, Ronald L. ca. 20./21. Jh. Verfasser (DE-588)1218632720 aut Tsatsomeros, Michael 1961- Verfasser (DE-588)1218632887 aut Erscheint auch als Druck-Ausgabe 978-1-108-47871-7 Cambridge Tracts in Mathematics 221 (DE-604)BV047362617 221 https://doi.org/10.1017/9781108778619 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Johnson, Charles R. 1948- Smith, Ronald L. ca. 20./21. Jh Tsatsomeros, Michael 1961- Matrix positivity Cambridge Tracts in Mathematics Matrices Positive Matrix (DE-588)7696958-7 gnd Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)7696958-7 (DE-588)4035811-2 |
title | Matrix positivity |
title_auth | Matrix positivity |
title_exact_search | Matrix positivity |
title_exact_search_txtP | Matrix positivity |
title_full | Matrix positivity Charles R. Johnson (College of William and Mary), Ronald L. Smith (University of Tennessee at Chattanooga), Michael J. Tsatsomeros (Washington State University) |
title_fullStr | Matrix positivity Charles R. Johnson (College of William and Mary), Ronald L. Smith (University of Tennessee at Chattanooga), Michael J. Tsatsomeros (Washington State University) |
title_full_unstemmed | Matrix positivity Charles R. Johnson (College of William and Mary), Ronald L. Smith (University of Tennessee at Chattanooga), Michael J. Tsatsomeros (Washington State University) |
title_short | Matrix positivity |
title_sort | matrix positivity |
topic | Matrices Positive Matrix (DE-588)7696958-7 gnd Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Matrices Positive Matrix Lineare Algebra |
url | https://doi.org/10.1017/9781108778619 |
volume_link | (DE-604)BV047362617 |
work_keys_str_mv | AT johnsoncharlesr matrixpositivity AT smithronaldl matrixpositivity AT tsatsomerosmichael matrixpositivity |