Accuracy of mathematical models: dimension reduction, homogenization, and simplification
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
European Mathematical Society
[2020]
|
Schriftenreihe: | EMS tracts in mathematics
33 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xvi, 317 Seiten 25 cm |
ISBN: | 9783037192061 3037192062 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV046920600 | ||
003 | DE-604 | ||
005 | 20221216 | ||
007 | t | ||
008 | 200930s2020 gw |||| 00||| eng d | ||
016 | 7 | |a 1213478901 |2 DE-101 | |
020 | |a 9783037192061 |c Festeinband |9 978-3-03719-206-1 | ||
020 | |a 3037192062 |9 3-03719-206-2 | ||
035 | |a (OCoLC)1183717845 | ||
035 | |a (DE-599)DNB1213478901 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-634 |a DE-11 |a DE-706 | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Repin, Sergej Igorevič |d 1953- |e Verfasser |0 (DE-588)1089800177 |4 aut | |
245 | 1 | 0 | |a Accuracy of mathematical models |b dimension reduction, homogenization, and simplification |c Sergey I. Repin, Stefan A. Sauter |
264 | 1 | |a Berlin |b European Mathematical Society |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a xvi, 317 Seiten |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a EMS tracts in mathematics |v 33 | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare elliptische Differentialgleichung |0 (DE-588)4310554-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homogenität |0 (DE-588)4300430-1 |2 gnd |9 rswk-swf |
653 | |a conversion of models | ||
653 | |a modelling error | ||
653 | |a homogenization | ||
653 | |a a posteriori error majorant | ||
653 | |a model simplification | ||
653 | |a dimension reduction | ||
689 | 0 | 0 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 1 | |a Homogenität |0 (DE-588)4300430-1 |D s |
689 | 0 | 2 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 3 | |a Nichtlineare elliptische Differentialgleichung |0 (DE-588)4310554-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sauter, Stefan |d 1964- |e Verfasser |0 (DE-588)129230006 |4 aut | |
710 | 2 | |a European Mathematical Society Publishing House ETH-Zentrum SEW A27 |0 (DE-588)1066118477 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-03719-706-6 |
830 | 0 | |a EMS tracts in mathematics |v 33 |w (DE-604)BV022480257 |9 33 | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1213478901/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032329818&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032329818 |
Datensatz im Suchindex
_version_ | 1804181807276490752 |
---|---|
adam_text | CONTENTS
PREFACE
...................................................................................................................
XI
1
INTRODUCTION
...................................................................................................
1
1.1
BASIC
NOTATION
.......................................................................................
1
1.1.1
DOMAINS
AND
OPERATORS
..............................................................
1
1.1.2
SPACES
OF
FUNCTIONS
....................................................................
2
1.1.3
CONVEX
FUNCTIONALS
....................................................................
4
1.2
FUNCTIONAL
INEQUALITIES
..........................................................................
7
1.2.1
HOLDER
TYPE
INEQUALITIES
...........................................................
7
1.2.2
FRIEDRICHS
AND
POINCARE
INEQUALITIES
........................................
7
1.2.3
INEQUALITIES
FOR
FUNCTIONS
WITH
ZERO
MEAN
TRACES
ON
THE
BOUNDARY
..........................................................................
10
1.2.4
KORN
*
S
INEQUALITIES
....................................................................
11
1.2.5
INF-SUP
CONDITION
....................................................................
12
1.3
COMPUTABLE
BOUNDS
OF
CONSTANTS
IN
FUNCTIONAL
INEQUALITIES
.......................................................................
15
1.3.1
CONSTANT
IN
THE
FRIEDRICHS
INEQUALITY
........................................
16
1.3.2
CONSTANTS
IN
POINCARE-TYPE
INEQUALITIES
..................................
17
1.3.3
CONSTANTS
IN
TRACE-TYPE
INEQUALITIES
...............................................
20
1.3.4
ESTIMATES
OF
CONSTANTS
BASED
ON
DOMAIN
DECOMPOSITION
....
20
2
DISTANCE
TO
EXACT
SOLUTIONS
.................................................................................
25
2.1
A
CLASS
OF
BOUNDARY
VALUE
PROBLEMS
.........................................................
25
2.2
THE
MAIN
ERROR
IDENTITY
..............................................................................
29
2.2.1
ERROR
MEASURE
.................................................................................
29
2.2.2
DECOMPOSITION
OF
THE
ERROR
MEASURE
............................................
31
2.2.3
PROBLEMS
WITH
LINEAR
J
7
..................................................................
33
2.2.4
ERROR
IDENTITIES
IN
VECTOR
FORM
.....................................................
42
2.2.5
DIFFERENCE
BETWEEN
THE
EXACT
SOLUTIONS
OF
TWO
PROBLEMS
....
43
2.3
LINEAR
PROBLEMS
........................................................................................44
2.3.1
ERROR
RELATIONS
IN
THE
GENERAL
FORM
...............................................
44
2.3.2
SPECIAL
CASE
....................................................................................47
2.3.3
PRIMAL-DUAL
NORMS
OF
ERRORS
IN
V
X
Y
*
......................................
50
2.3.4
ERRORS
IN
THE
FULL
PRIMAL-DUAL
NORM
...............................................
52
2.3.5
MAJORANT
AS
A
SOURCE
OF
NEW
MODELS
............................................
54
2.3.6
NON-HOMOGENEOUS
BOUNDARY
CONDITIONS
......................................
55
2.4
APPLICATIONS
TO
PARTICULAR
MATHEMATICAL
MODELS
.......................................
57
2.4.1
DIFFUSION
TYPE
MODELS
..................................................................
57
2.4.2
MIXED
BOUNDARY
CONDITIONS
............................................................
59
2.4.3
PROBLEMS
WITH
PERIODIC
BOUNDARY
CONDITIONS
................................
60
2.4.4
ADVANCED
ESTIMATES
BASED
ON
DOMAIN
DECOMPOSITION
............
61
VIII
CONTENTS
2.4.5
ELASTICITY
........................................................................................
64
2.4.6
VARIATIONAL
FUNCTIONALS
WITH
POWER
GROWTH
....................................
70
2.4.7
STOKES
PROBLEM
...............................................................................
75
2.4.8
BINGHAM
PROBLEM
............................................................................
79
2.4.9
ANOTHER
ERROR
ESTIMATION
METHOD
...................................................
81
2.5
VALIDATION
OF
MATHEMATICAL
MODELS
............................................................
86
2.6
ERRORS
OF
NUMERICAL
APPROXIMATIONS
.........................................................
89
2.6.1
TWO-SIDED
ESTIMATES
OF
APPROXIMATION
ERRORS
.............................90
2.6.2
REDUCTION
OF
THE
SET
Q*
*
............................................................
91
2.6.3
TRANSFORMATION
OF
..................................................
92
2.6.4
USING
EXTRA
REGULARITY
OF
THE
EXACT
SOLUTION
................................
93
2.6.5
USING
AN
AUXILIARY
FINITE-DIMENSIONAL
PROBLEM
.............................94
2.6.6
APPLICATIONS
TO
LEAST
SQUARES
TYPE
METHODS
...................................
99
2.6.7
NONCONFORMING
APPROXIMATIONS
.................................................
101
3
DIMENSION
REDUCTION
MODELS
..........................................................................
103
3.1
DIMENSION
REDUCTION
................................................................................
103
3.2
SECOND-ORDER
ELLIPTIC
PROBLEMS
.................................................................
107
3.2.1
BASIC
PROBLEM
................................................................................
107
3.2.2
REDUCED
PROBLEM
..........................................................................
108
3.2.3
ERROR
GENERATED
BY
DIMENSION
REDUCTION
.....................................
110
3.2.4
PARTICULAR
CASES
.............................................................................
115
3.2.5
EXAMPLES
......................................................................................
117
3.3
DIMENSION
REDUCTION
IN
LINEAR
ELASTICITY
.................................................
123
3.3.1
THE
PLANE
STRESS
PROBLEM
.............................................................
123
3.3.2
THE
FUNCTION
/
.............................................................................
130
3.3.3
BEHAVIOR
OF
THE
MODELLING
ERROR
AS
T
*
0
.................................
132
3.3.4
EXAMPLE
.........................................................................................
134
3.4
BENDING
OF
ELASTIC
PLATES
..........................................................................
136
3.4.1
STATEMENT
OF
THE
PROBLEM
.............................................................
136
3.4.2
THE
KIRCHHOFF-LOVE
PLATE
MODEL
.................................................
137
3.4.3
RECONSTRUCTION
OF
3D
DISPLACEMENTS
...........................................
140
3.4.4
RECONSTRUCTION
OF
3D
STRESSES
....................................................
140
3.4.5
ERROR
ESTIMATES
FOR
PLATE-TYPE
DOMAINS
........................................
141
3.4.6
ACCURACY
OF
THE
KL
PLATE
MODEL
.................................................
149
3.4.7
ESTIMATES
OF
THE
MODELLING
ERROR
.................................................
150
3.4.8
ASYMPTOTIC
BEHAVIOUR
OF
THE
ERROR
MAJORANT
..............................
152
4
MODEL
SIMPLIFICATION
.........................................................................................
159
4.1
MODEL
SIMPLIFICATION
BASED
ON
THE
CONCEPT
OF
ENERGY
............................
159
4.2
SIMPLIFICATION
OF
COEFFICIENTS
....................................................................
164
4.2.1
SECOND-ORDER
ELLIPTIC
PROBLEMS
....................................................
165
4.2.2
GENERAL
ELLIPTIC
PROBLEM
.............................................................
168
4.2.3
USING
EXTRA
REGULARITY
OF
U
..........................................................
170
CONTENTS
IX
4.2.4
ASYMPTOTIC
RATE
OF
CONVERGENCE
OF
THE
ERROR
ESTIMATOR
(V)
IN
TERMS
OF
THE
MEASURE
OF
THE
NON-RESOLVED
GEOMETRY
............
172
4.3
GEOMETRICAL
SIMPLIFICATION
......................................................................
173
4.3.1
SIMPLIFICATION
OF
THE
DIRICHLET
BOUNDARY
....................................
173
4.3.2
GENERALIZATIONS
.............................................................................
177
4.3.3
SIMPLIFICATION
OF
THE
NEUMANN
BOUNDARY
.................................
179
4.4
COMMENTS
...............................................................................................
182
4.4.1
PROBLEMS
WITH
*
ROUGH
*
COEFFICIENTS
...........................................
182
4.4.2
MODELLING-DISCRETIZATION
ADAPTATION
STRATEGIES
...........................
184
4.4.3
PROBLEMS
WITH
UNCERTAIN
DATA
.......................................................
185
5
ELLIPTIC
HOMOGENIZATION
...................................................................................
187
5.1
SETTING
......................................................................................................
187
5.2
MATHEMATICAL
HOMOGENIZATION
VIA
ASYMPTOTIC
EXPANSIONS
.....................
190
5.3
PROPERTIES
OF
THE
HOMOGENIZED
PROBLEM
.................................................
195
5.3.1
WELL-POSEDNESS
OF
THE
HOMOGENIZED
EQUATION
...........................
196
5.3.2
REGULARITY
ESTIMATES
FOR
THE
HOMOGENIZED
EQUATION
...............
201
5.3.3
REGULARITY
ESTIMATES
FOR
THE
CELL
PROBLEM
....................................209
5.3.4
CONVERGENCE
OF
THE
FIRST-ORDER
APPROXIMATION
...........................
213
5.4
DISCRETIZATION
............................................................................................
218
5.5
ERROR ESTIMATION
......................................................................................
221
5.5.1
GENERAL
COMMENTS
......................................................................
221
5.5.2
ESTIMATES
OF
THE
MODELLING
ERROR
................................................
225
5.5.3
ERROR
OF
THE
FULLY
DISCRETE
FIRST-ORDER
APPROXIMATION
...............230
5.6
COMMENTS
...............................................................................................
245
5.6.1
REGULARITY
AND
EMBEDDING
CONSTANTS
..........................................
245
5.6.2
MODELING-DISCRETIZATION
STRATEGIES
.............................................
247
5.6.3
MULTISCALE
PROBLEMS
...................................................................
248
6
CONVERSION
OF
MODELS
......................................................................................
251
6.1
REGULARIZATION
OF
MODELS
.........................................................................
251
6.1.1
ADDING
A
REGULARIZING
TERM
..........................................................
251
6.1.2
SMOOTHING
...................................................................................
253
6.1.3
PROX-TYPE
REGULARIZATION
.............................................................
259
6.2
ERRORS
OF
PENALTY-TYPE
MODELS
................................................................262
6.2.1
GENERAL
APPROACH
.........................................................................
262
6.2.2
VARIATIONAL
PROBLEMS
DEFINED
IN
SUBSPACES
.................................
265
6.3
FICTITIOUS
DOMAIN
METHODS
......................................................................
269
6.4
LINEARIZATION
............................................................................................
275
6.5
ERRORS
OF
TIME-INCREMENTAL
MODELS
..........................................................
278
X
CONTENTS
A
W
1,P
-REGULARITY
CONSTANT
FOR
SECOND-ORDER
ELLIPTIC
PROBLEMS
WITH
NONSMOOTH
COEFFICIENTS
......................................................................
283
BIBLIOGRAPHY
............................................................................................................
293
LIST
OF
NOTATIONS
......................................................................................................
311
INDEX
........................................................................................................................
315
|
adam_txt |
CONTENTS
PREFACE
.
XI
1
INTRODUCTION
.
1
1.1
BASIC
NOTATION
.
1
1.1.1
DOMAINS
AND
OPERATORS
.
1
1.1.2
SPACES
OF
FUNCTIONS
.
2
1.1.3
CONVEX
FUNCTIONALS
.
4
1.2
FUNCTIONAL
INEQUALITIES
.
7
1.2.1
HOLDER
TYPE
INEQUALITIES
.
7
1.2.2
FRIEDRICHS
AND
POINCARE
INEQUALITIES
.
7
1.2.3
INEQUALITIES
FOR
FUNCTIONS
WITH
ZERO
MEAN
TRACES
ON
THE
BOUNDARY
.
10
1.2.4
KORN
*
S
INEQUALITIES
.
11
1.2.5
INF-SUP
CONDITION
.
12
1.3
COMPUTABLE
BOUNDS
OF
CONSTANTS
IN
FUNCTIONAL
INEQUALITIES
.
15
1.3.1
CONSTANT
IN
THE
FRIEDRICHS
INEQUALITY
.
16
1.3.2
CONSTANTS
IN
POINCARE-TYPE
INEQUALITIES
.
17
1.3.3
CONSTANTS
IN
TRACE-TYPE
INEQUALITIES
.
20
1.3.4
ESTIMATES
OF
CONSTANTS
BASED
ON
DOMAIN
DECOMPOSITION
.
20
2
DISTANCE
TO
EXACT
SOLUTIONS
.
25
2.1
A
CLASS
OF
BOUNDARY
VALUE
PROBLEMS
.
25
2.2
THE
MAIN
ERROR
IDENTITY
.
29
2.2.1
ERROR
MEASURE
.
29
2.2.2
DECOMPOSITION
OF
THE
ERROR
MEASURE
.
31
2.2.3
PROBLEMS
WITH
LINEAR
J
7
.
33
2.2.4
ERROR
IDENTITIES
IN
VECTOR
FORM
.
42
2.2.5
DIFFERENCE
BETWEEN
THE
EXACT
SOLUTIONS
OF
TWO
PROBLEMS
.
43
2.3
LINEAR
PROBLEMS
.44
2.3.1
ERROR
RELATIONS
IN
THE
GENERAL
FORM
.
44
2.3.2
SPECIAL
CASE
.47
2.3.3
PRIMAL-DUAL
NORMS
OF
ERRORS
IN
V
X
Y
*
.
50
2.3.4
ERRORS
IN
THE
FULL
PRIMAL-DUAL
NORM
.
52
2.3.5
MAJORANT
AS
A
SOURCE
OF
NEW
MODELS
.
54
2.3.6
NON-HOMOGENEOUS
BOUNDARY
CONDITIONS
.
55
2.4
APPLICATIONS
TO
PARTICULAR
MATHEMATICAL
MODELS
.
57
2.4.1
DIFFUSION
TYPE
MODELS
.
57
2.4.2
MIXED
BOUNDARY
CONDITIONS
.
59
2.4.3
PROBLEMS
WITH
PERIODIC
BOUNDARY
CONDITIONS
.
60
2.4.4
ADVANCED
ESTIMATES
BASED
ON
DOMAIN
DECOMPOSITION
.
61
VIII
CONTENTS
2.4.5
ELASTICITY
.
64
2.4.6
VARIATIONAL
FUNCTIONALS
WITH
POWER
GROWTH
.
70
2.4.7
STOKES
PROBLEM
.
75
2.4.8
BINGHAM
PROBLEM
.
79
2.4.9
ANOTHER
ERROR
ESTIMATION
METHOD
.
81
2.5
VALIDATION
OF
MATHEMATICAL
MODELS
.
86
2.6
ERRORS
OF
NUMERICAL
APPROXIMATIONS
.
89
2.6.1
TWO-SIDED
ESTIMATES
OF
APPROXIMATION
ERRORS
.90
2.6.2
REDUCTION
OF
THE
SET
Q*
*
.
91
2.6.3
TRANSFORMATION
OF
.
92
2.6.4
USING
EXTRA
REGULARITY
OF
THE
EXACT
SOLUTION
.
93
2.6.5
USING
AN
AUXILIARY
FINITE-DIMENSIONAL
PROBLEM
.94
2.6.6
APPLICATIONS
TO
LEAST
SQUARES
TYPE
METHODS
.
99
2.6.7
NONCONFORMING
APPROXIMATIONS
.
101
3
DIMENSION
REDUCTION
MODELS
.
103
3.1
DIMENSION
REDUCTION
.
103
3.2
SECOND-ORDER
ELLIPTIC
PROBLEMS
.
107
3.2.1
BASIC
PROBLEM
.
107
3.2.2
REDUCED
PROBLEM
.
108
3.2.3
ERROR
GENERATED
BY
DIMENSION
REDUCTION
.
110
3.2.4
PARTICULAR
CASES
.
115
3.2.5
EXAMPLES
.
117
3.3
DIMENSION
REDUCTION
IN
LINEAR
ELASTICITY
.
123
3.3.1
THE
PLANE
STRESS
PROBLEM
.
123
3.3.2
THE
FUNCTION
/
.
130
3.3.3
BEHAVIOR
OF
THE
MODELLING
ERROR
AS
T
*
0
.
132
3.3.4
EXAMPLE
.
134
3.4
BENDING
OF
ELASTIC
PLATES
.
136
3.4.1
STATEMENT
OF
THE
PROBLEM
.
136
3.4.2
THE
KIRCHHOFF-LOVE
PLATE
MODEL
.
137
3.4.3
RECONSTRUCTION
OF
3D
DISPLACEMENTS
.
140
3.4.4
RECONSTRUCTION
OF
3D
STRESSES
.
140
3.4.5
ERROR
ESTIMATES
FOR
PLATE-TYPE
DOMAINS
.
141
3.4.6
ACCURACY
OF
THE
KL
PLATE
MODEL
.
149
3.4.7
ESTIMATES
OF
THE
MODELLING
ERROR
.
150
3.4.8
ASYMPTOTIC
BEHAVIOUR
OF
THE
ERROR
MAJORANT
.
152
4
MODEL
SIMPLIFICATION
.
159
4.1
MODEL
SIMPLIFICATION
BASED
ON
THE
CONCEPT
OF
ENERGY
.
159
4.2
SIMPLIFICATION
OF
COEFFICIENTS
.
164
4.2.1
SECOND-ORDER
ELLIPTIC
PROBLEMS
.
165
4.2.2
GENERAL
ELLIPTIC
PROBLEM
.
168
4.2.3
USING
EXTRA
REGULARITY
OF
U
.
170
CONTENTS
IX
4.2.4
ASYMPTOTIC
RATE
OF
CONVERGENCE
OF
THE
ERROR
ESTIMATOR
(V)
IN
TERMS
OF
THE
MEASURE
OF
THE
NON-RESOLVED
GEOMETRY
.
172
4.3
GEOMETRICAL
SIMPLIFICATION
.
173
4.3.1
SIMPLIFICATION
OF
THE
DIRICHLET
BOUNDARY
.
173
4.3.2
GENERALIZATIONS
.
177
4.3.3
SIMPLIFICATION
OF
THE
NEUMANN
BOUNDARY
.
179
4.4
COMMENTS
.
182
4.4.1
PROBLEMS
WITH
*
ROUGH
*
COEFFICIENTS
.
182
4.4.2
MODELLING-DISCRETIZATION
ADAPTATION
STRATEGIES
.
184
4.4.3
PROBLEMS
WITH
UNCERTAIN
DATA
.
185
5
ELLIPTIC
HOMOGENIZATION
.
187
5.1
SETTING
.
187
5.2
MATHEMATICAL
HOMOGENIZATION
VIA
ASYMPTOTIC
EXPANSIONS
.
190
5.3
PROPERTIES
OF
THE
HOMOGENIZED
PROBLEM
.
195
5.3.1
WELL-POSEDNESS
OF
THE
HOMOGENIZED
EQUATION
.
196
5.3.2
REGULARITY
ESTIMATES
FOR
THE
HOMOGENIZED
EQUATION
.
201
5.3.3
REGULARITY
ESTIMATES
FOR
THE
CELL
PROBLEM
.209
5.3.4
CONVERGENCE
OF
THE
FIRST-ORDER
APPROXIMATION
.
213
5.4
DISCRETIZATION
.
218
5.5
ERROR ESTIMATION
.
221
5.5.1
GENERAL
COMMENTS
.
221
5.5.2
ESTIMATES
OF
THE
MODELLING
ERROR
.
225
5.5.3
ERROR
OF
THE
FULLY
DISCRETE
FIRST-ORDER
APPROXIMATION
.230
5.6
COMMENTS
.
245
5.6.1
REGULARITY
AND
EMBEDDING
CONSTANTS
.
245
5.6.2
MODELING-DISCRETIZATION
STRATEGIES
.
247
5.6.3
MULTISCALE
PROBLEMS
.
248
6
CONVERSION
OF
MODELS
.
251
6.1
REGULARIZATION
OF
MODELS
.
251
6.1.1
ADDING
A
REGULARIZING
TERM
.
251
6.1.2
SMOOTHING
.
253
6.1.3
PROX-TYPE
REGULARIZATION
.
259
6.2
ERRORS
OF
PENALTY-TYPE
MODELS
.262
6.2.1
GENERAL
APPROACH
.
262
6.2.2
VARIATIONAL
PROBLEMS
DEFINED
IN
SUBSPACES
.
265
6.3
FICTITIOUS
DOMAIN
METHODS
.
269
6.4
LINEARIZATION
.
275
6.5
ERRORS
OF
TIME-INCREMENTAL
MODELS
.
278
X
CONTENTS
A
W
1,P
-REGULARITY
CONSTANT
FOR
SECOND-ORDER
ELLIPTIC
PROBLEMS
WITH
NONSMOOTH
COEFFICIENTS
.
283
BIBLIOGRAPHY
.
293
LIST
OF
NOTATIONS
.
311
INDEX
.
315 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Repin, Sergej Igorevič 1953- Sauter, Stefan 1964- |
author_GND | (DE-588)1089800177 (DE-588)129230006 |
author_facet | Repin, Sergej Igorevič 1953- Sauter, Stefan 1964- |
author_role | aut aut |
author_sort | Repin, Sergej Igorevič 1953- |
author_variant | s i r si sir s s ss |
building | Verbundindex |
bvnumber | BV046920600 |
classification_rvk | SK 560 SK 660 |
ctrlnum | (OCoLC)1183717845 (DE-599)DNB1213478901 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02629nam a2200601 cb4500</leader><controlfield tag="001">BV046920600</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200930s2020 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1213478901</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037192061</subfield><subfield code="c">Festeinband</subfield><subfield code="9">978-3-03719-206-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037192062</subfield><subfield code="9">3-03719-206-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1183717845</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1213478901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Repin, Sergej Igorevič</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089800177</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accuracy of mathematical models</subfield><subfield code="b">dimension reduction, homogenization, and simplification</subfield><subfield code="c">Sergey I. Repin, Stefan A. Sauter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">European Mathematical Society</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 317 Seiten</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">EMS tracts in mathematics</subfield><subfield code="v">33</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogenität</subfield><subfield code="0">(DE-588)4300430-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">conversion of models</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modelling error</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">homogenization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">a posteriori error majorant</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">model simplification</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dimension reduction</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homogenität</subfield><subfield code="0">(DE-588)4300430-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sauter, Stefan</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129230006</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">European Mathematical Society Publishing House ETH-Zentrum SEW A27</subfield><subfield code="0">(DE-588)1066118477</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-03719-706-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">EMS tracts in mathematics</subfield><subfield code="v">33</subfield><subfield code="w">(DE-604)BV022480257</subfield><subfield code="9">33</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1213478901/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032329818&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032329818</subfield></datafield></record></collection> |
id | DE-604.BV046920600 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:31:09Z |
indexdate | 2024-07-10T08:57:31Z |
institution | BVB |
institution_GND | (DE-588)1066118477 |
isbn | 9783037192061 3037192062 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032329818 |
oclc_num | 1183717845 |
open_access_boolean | |
owner | DE-634 DE-11 DE-706 |
owner_facet | DE-634 DE-11 DE-706 |
physical | xvi, 317 Seiten 25 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | European Mathematical Society |
record_format | marc |
series | EMS tracts in mathematics |
series2 | EMS tracts in mathematics |
spelling | Repin, Sergej Igorevič 1953- Verfasser (DE-588)1089800177 aut Accuracy of mathematical models dimension reduction, homogenization, and simplification Sergey I. Repin, Stefan A. Sauter Berlin European Mathematical Society [2020] © 2020 xvi, 317 Seiten 25 cm txt rdacontent n rdamedia nc rdacarrier EMS tracts in mathematics 33 Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Homogenität (DE-588)4300430-1 gnd rswk-swf conversion of models modelling error homogenization a posteriori error majorant model simplification dimension reduction Mathematisches Modell (DE-588)4114528-8 s Homogenität (DE-588)4300430-1 s Partielle Differentialgleichung (DE-588)4044779-0 s Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 s DE-604 Sauter, Stefan 1964- Verfasser (DE-588)129230006 aut European Mathematical Society Publishing House ETH-Zentrum SEW A27 (DE-588)1066118477 pbl Erscheint auch als Online-Ausgabe 978-3-03719-706-6 EMS tracts in mathematics 33 (DE-604)BV022480257 33 B:DE-101 application/pdf https://d-nb.info/1213478901/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032329818&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Repin, Sergej Igorevič 1953- Sauter, Stefan 1964- Accuracy of mathematical models dimension reduction, homogenization, and simplification EMS tracts in mathematics Mathematisches Modell (DE-588)4114528-8 gnd Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Homogenität (DE-588)4300430-1 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4310554-3 (DE-588)4044779-0 (DE-588)4300430-1 |
title | Accuracy of mathematical models dimension reduction, homogenization, and simplification |
title_auth | Accuracy of mathematical models dimension reduction, homogenization, and simplification |
title_exact_search | Accuracy of mathematical models dimension reduction, homogenization, and simplification |
title_exact_search_txtP | Accuracy of mathematical models dimension reduction, homogenization, and simplification |
title_full | Accuracy of mathematical models dimension reduction, homogenization, and simplification Sergey I. Repin, Stefan A. Sauter |
title_fullStr | Accuracy of mathematical models dimension reduction, homogenization, and simplification Sergey I. Repin, Stefan A. Sauter |
title_full_unstemmed | Accuracy of mathematical models dimension reduction, homogenization, and simplification Sergey I. Repin, Stefan A. Sauter |
title_short | Accuracy of mathematical models |
title_sort | accuracy of mathematical models dimension reduction homogenization and simplification |
title_sub | dimension reduction, homogenization, and simplification |
topic | Mathematisches Modell (DE-588)4114528-8 gnd Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Homogenität (DE-588)4300430-1 gnd |
topic_facet | Mathematisches Modell Nichtlineare elliptische Differentialgleichung Partielle Differentialgleichung Homogenität |
url | https://d-nb.info/1213478901/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032329818&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022480257 |
work_keys_str_mv | AT repinsergejigorevic accuracyofmathematicalmodelsdimensionreductionhomogenizationandsimplification AT sauterstefan accuracyofmathematicalmodelsdimensionreductionhomogenizationandsimplification AT europeanmathematicalsocietypublishinghouseethzentrumsewa27 accuracyofmathematicalmodelsdimensionreductionhomogenizationandsimplification |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis