Solving semi-infinite optimization problems with quadratic rate of convergence:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English German |
Veröffentlicht: |
Stuttgart
Fraunhofer Verlag
2020
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Zusammenfassung und Werdegang in deutscher und englischer Sprache |
Beschreibung: | ix, 131 Seiten Diagramme |
ISBN: | 9783839615911 3839615917 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV046917684 | ||
003 | DE-604 | ||
005 | 20201021 | ||
007 | t | ||
008 | 200929s2020 gw |||| m||| 00||| eng d | ||
015 | |a 20,N28 |2 dnb | ||
016 | 7 | |a 1212876717 |2 DE-101 | |
020 | |a 9783839615911 |c : EUR 59.00 (DE), EUR 60.70 (AT), CHF 90.90 (freier Preis) |9 978-3-8396-1591-1 | ||
020 | |a 3839615917 |9 3-8396-1591-7 | ||
024 | 3 | |a 9783839615911 | |
028 | 5 | 2 | |a Bestellnummer: fhg-twm_42 |
035 | |a (OCoLC)1164120061 | ||
035 | |a (DE-599)DNB1212876717 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng |a ger | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-355 |a DE-634 | ||
084 | |a 510 |2 sdnb | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Seidel, Tobias |d 1993- |e Verfasser |0 (DE-588)121773628X |4 aut | |
245 | 1 | 0 | |a Solving semi-infinite optimization problems with quadratic rate of convergence |c Tobias Seidel |
263 | |a 202006 | ||
264 | 1 | |a Stuttgart |b Fraunhofer Verlag |c 2020 | |
300 | |a ix, 131 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Zusammenfassung und Werdegang in deutscher und englischer Sprache | ||
502 | |b Dissertation |c Technische Universität Kaiserslauternrn |d 2019 | ||
650 | 0 | 7 | |a Semiinfinite Optimierung |0 (DE-588)4137036-3 |2 gnd |9 rswk-swf |
653 | |a Semi-infinite programming | ||
653 | |a Discretization | ||
653 | |a Rate of convergence | ||
653 | |a Stationary points | ||
653 | |a Strong stability | ||
653 | |a Mathematiker | ||
653 | |a Informatiker | ||
653 | |a Verfahrensingenieure | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Semiinfinite Optimierung |0 (DE-588)4137036-3 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Fraunhofer IRB-Verlag |0 (DE-588)4786605-6 |4 pbl | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=06d154519d3344488907d1b9435f02f0&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032326982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032326982 |
Datensatz im Suchindex
_version_ | 1804181802640736257 |
---|---|
adam_text | CONTENTS
LIST
OF
SYMBOLS
AND
ABBREVIATIONS
1
1
INTRODUCTION
3
2
FOUNDATIONS
OF
NONLINEAR
AND
SEMI-INFINITE
OPTIMIZATION
15
2.1
NONLINEAR
OPTIMIZATION
.........................................................................
17
2.1.1
OPTIMALITY
CONDITIONS
.............................................................
17
2.1.2
STRONG
STABILITY
OF
STATIONARY
POINTS
........................................
20
2.2
SEMI-INFINITE
OPTIMIZATION
...................................................................
27
2.2.1
OPTIMALITY
CONDITIONS
.............................................................
31
2.2.2
STRONG
STABILITY
OF
STATIONARY
POINTS
........................................
34
3
CONVERGENCE
SPEED
FOR
ADAPTIVE
DISCRETIZATION
BY
BLANKENSHIP
AND
FALK
41
3.1
BOUNDS
BASED
ON
THE
MAXIMAL
VIOLATION
..............................................
43
3.1.1
AN
EXAMPLE
WITH
ARBITRARILY
SLOW
CONVERGENCE
.....................
44
3.1.2
A
STATEMENT
USING
THE
ORDER
OF
A
MINIMUM
...........................
49
3.2
QUADRATIC
RATE
OF
CONVERGENCE
FOR
OPTIMA
OF
ORDER
ONE
.......................
52
4
AN
ADAPTIVE
DISCRETIZATION
METHOD
WITH
QUADRATIC
RATE
OF
CONVERGENCE
63
4.1
BASIC
CONVERGENCE
PROPERTIES
................................................................
69
4.1.1
CONVERGENCE
OF
STATIONARY
POINTS
...........................................
71
4.1.2
CONVERGENCE
OF
LOCAL
SOLUTIONS
.................................................
76
4.2
QUADRATIC
RATE
OF
CONVERGENCE
.............................................................
83
5
THE
GENERALIZED
SEMI-INFINITE
CASE
95
5.1
TWO
ALGORITHMIC
VARIANTS
......................................................................
95
5.2
TRANSFER
OF
THE
CONVERGENCE
RESULTS
....................................................
98
6
NUMERICAL
ASPECTS
103
6.1
THREE
NUMERICAL
EXAMPLES
.......................................................................
105
6.2
INCREASE
OF
PROBLEM
DIMENSION
.................................................................
112
6.3
SUMMARY
..................................................................................................
114
SUMMARY
AND
FURTHER
WORK
117
BIBLIOGRAPHY
121
|
adam_txt |
CONTENTS
LIST
OF
SYMBOLS
AND
ABBREVIATIONS
1
1
INTRODUCTION
3
2
FOUNDATIONS
OF
NONLINEAR
AND
SEMI-INFINITE
OPTIMIZATION
15
2.1
NONLINEAR
OPTIMIZATION
.
17
2.1.1
OPTIMALITY
CONDITIONS
.
17
2.1.2
STRONG
STABILITY
OF
STATIONARY
POINTS
.
20
2.2
SEMI-INFINITE
OPTIMIZATION
.
27
2.2.1
OPTIMALITY
CONDITIONS
.
31
2.2.2
STRONG
STABILITY
OF
STATIONARY
POINTS
.
34
3
CONVERGENCE
SPEED
FOR
ADAPTIVE
DISCRETIZATION
BY
BLANKENSHIP
AND
FALK
41
3.1
BOUNDS
BASED
ON
THE
MAXIMAL
VIOLATION
.
43
3.1.1
AN
EXAMPLE
WITH
ARBITRARILY
SLOW
CONVERGENCE
.
44
3.1.2
A
STATEMENT
USING
THE
ORDER
OF
A
MINIMUM
.
49
3.2
QUADRATIC
RATE
OF
CONVERGENCE
FOR
OPTIMA
OF
ORDER
ONE
.
52
4
AN
ADAPTIVE
DISCRETIZATION
METHOD
WITH
QUADRATIC
RATE
OF
CONVERGENCE
63
4.1
BASIC
CONVERGENCE
PROPERTIES
.
69
4.1.1
CONVERGENCE
OF
STATIONARY
POINTS
.
71
4.1.2
CONVERGENCE
OF
LOCAL
SOLUTIONS
.
76
4.2
QUADRATIC
RATE
OF
CONVERGENCE
.
83
5
THE
GENERALIZED
SEMI-INFINITE
CASE
95
5.1
TWO
ALGORITHMIC
VARIANTS
.
95
5.2
TRANSFER
OF
THE
CONVERGENCE
RESULTS
.
98
6
NUMERICAL
ASPECTS
103
6.1
THREE
NUMERICAL
EXAMPLES
.
105
6.2
INCREASE
OF
PROBLEM
DIMENSION
.
112
6.3
SUMMARY
.
114
SUMMARY
AND
FURTHER
WORK
117
BIBLIOGRAPHY
121 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Seidel, Tobias 1993- |
author_GND | (DE-588)121773628X |
author_facet | Seidel, Tobias 1993- |
author_role | aut |
author_sort | Seidel, Tobias 1993- |
author_variant | t s ts |
building | Verbundindex |
bvnumber | BV046917684 |
ctrlnum | (OCoLC)1164120061 (DE-599)DNB1212876717 |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02250nam a22005658c 4500</leader><controlfield tag="001">BV046917684</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201021 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200929s2020 gw |||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N28</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1212876717</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783839615911</subfield><subfield code="c">: EUR 59.00 (DE), EUR 60.70 (AT), CHF 90.90 (freier Preis)</subfield><subfield code="9">978-3-8396-1591-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3839615917</subfield><subfield code="9">3-8396-1591-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783839615911</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: fhg-twm_42</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164120061</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1212876717</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seidel, Tobias</subfield><subfield code="d">1993-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121773628X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving semi-infinite optimization problems with quadratic rate of convergence</subfield><subfield code="c">Tobias Seidel</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">202006</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stuttgart</subfield><subfield code="b">Fraunhofer Verlag</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 131 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zusammenfassung und Werdegang in deutscher und englischer Sprache</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Kaiserslauternrn</subfield><subfield code="d">2019</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semiinfinite Optimierung</subfield><subfield code="0">(DE-588)4137036-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Semi-infinite programming</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Discretization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rate of convergence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stationary points</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Strong stability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematiker</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Informatiker</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Verfahrensingenieure</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Semiinfinite Optimierung</subfield><subfield code="0">(DE-588)4137036-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Fraunhofer IRB-Verlag</subfield><subfield code="0">(DE-588)4786605-6</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=06d154519d3344488907d1b9435f02f0&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032326982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032326982</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046917684 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:30:12Z |
indexdate | 2024-07-10T08:57:27Z |
institution | BVB |
institution_GND | (DE-588)4786605-6 |
isbn | 9783839615911 3839615917 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032326982 |
oclc_num | 1164120061 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-634 |
owner_facet | DE-355 DE-BY-UBR DE-634 |
physical | ix, 131 Seiten Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Fraunhofer Verlag |
record_format | marc |
spelling | Seidel, Tobias 1993- Verfasser (DE-588)121773628X aut Solving semi-infinite optimization problems with quadratic rate of convergence Tobias Seidel 202006 Stuttgart Fraunhofer Verlag 2020 ix, 131 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Zusammenfassung und Werdegang in deutscher und englischer Sprache Dissertation Technische Universität Kaiserslauternrn 2019 Semiinfinite Optimierung (DE-588)4137036-3 gnd rswk-swf Semi-infinite programming Discretization Rate of convergence Stationary points Strong stability Mathematiker Informatiker Verfahrensingenieure (DE-588)4113937-9 Hochschulschrift gnd-content Semiinfinite Optimierung (DE-588)4137036-3 s DE-604 Fraunhofer IRB-Verlag (DE-588)4786605-6 pbl X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=06d154519d3344488907d1b9435f02f0&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032326982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Seidel, Tobias 1993- Solving semi-infinite optimization problems with quadratic rate of convergence Semiinfinite Optimierung (DE-588)4137036-3 gnd |
subject_GND | (DE-588)4137036-3 (DE-588)4113937-9 |
title | Solving semi-infinite optimization problems with quadratic rate of convergence |
title_auth | Solving semi-infinite optimization problems with quadratic rate of convergence |
title_exact_search | Solving semi-infinite optimization problems with quadratic rate of convergence |
title_exact_search_txtP | Solving semi-infinite optimization problems with quadratic rate of convergence |
title_full | Solving semi-infinite optimization problems with quadratic rate of convergence Tobias Seidel |
title_fullStr | Solving semi-infinite optimization problems with quadratic rate of convergence Tobias Seidel |
title_full_unstemmed | Solving semi-infinite optimization problems with quadratic rate of convergence Tobias Seidel |
title_short | Solving semi-infinite optimization problems with quadratic rate of convergence |
title_sort | solving semi infinite optimization problems with quadratic rate of convergence |
topic | Semiinfinite Optimierung (DE-588)4137036-3 gnd |
topic_facet | Semiinfinite Optimierung Hochschulschrift |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=06d154519d3344488907d1b9435f02f0&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032326982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT seideltobias solvingsemiinfiniteoptimizationproblemswithquadraticrateofconvergence AT fraunhoferirbverlag solvingsemiinfiniteoptimizationproblemswithquadraticrateofconvergence |