Dancing with qubits: how quantum computing works and how it can change the world
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham ; Mumbai
Packt Publishing
[2019]
|
Schriftenreihe: | Expert insight
|
Schlagworte: | |
Online-Zugang: | FHD01 FUBA1 |
Beschreibung: | 7.3 The complex math and physics of a single qubit |
Beschreibung: | 1 Online-Ressource (xviii, 488 Seiten) Diagramme |
ISBN: | 9781838825256 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046916025 | ||
003 | DE-604 | ||
005 | 20211214 | ||
007 | cr|uuu---uuuuu | ||
008 | 200928s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781838825256 |c Online |9 978-1-83882-525-6 | ||
035 | |a (OCoLC)1199068369 | ||
035 | |a (DE-599)BVBBV046916025 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-188 | ||
084 | |a ST 152 |0 (DE-625)143596: |2 rvk | ||
100 | 1 | |a Sutor, Robert S. |e Verfasser |0 (DE-588)1218721464 |4 aut | |
245 | 1 | 0 | |a Dancing with qubits |b how quantum computing works and how it can change the world |c Robert S. Sutor |
264 | 1 | |a Birmingham ; Mumbai |b Packt Publishing |c [2019] | |
300 | |a 1 Online-Ressource (xviii, 488 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Expert insight | |
500 | |a 7.3 The complex math and physics of a single qubit | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Packt page -- Dedication -- Contributors -- Contents -- List of Figures -- Preface -- Chapter 1: Why Quantum Computing? -- 1.1 The mysterious quantum bit -- 1.2 I'm awake! -- 1.3 Why quantum computing is different -- 1.4 Applications to artificial intelligence -- 1.5 Applications to financial services -- 1.6 What about cryptography? -- 1.7 Summary -- I Foundations -- Chapter 2: They're Not Old, They're Classics -- 2.1 What's inside a computer? -- 2.2 The power of two -- 2.3 True or false? -- 2.4 Logic circuits -- 2.5 Addition, logically | |
505 | 8 | |a 2.6 Algorithmically speaking -- 2.7 Growth, exponential and otherwise -- 2.8 How hard can that be? -- 2.8.1 Sorting -- 2.8.2 Searching -- 2.9 Summary -- Chapter 3: More Numbers than You Can Imagine -- 3.1 Natural numbers -- 3.2 Whole numbers -- 3.3 Integers -- 3.4 Rational numbers -- 3.4.1 Fractions -- 3.4.2 Getting formal again -- 3.5 Real numbers -- 3.5.1 Decimals -- 3.5.2 Irrationals and limits -- 3.5.3 Binary forms -- 3.5.4 Continued fractions -- 3.6 Structure -- 3.6.1 Groups -- 3.6.2 Rings -- 3.6.3 Fields -- 3.6.4 Even greater abstraction -- 3.7 Modular arithmetic -- 3.8 Doubling down | |
505 | 8 | |a 3.9 Complex numbers, algebraically -- 3.9.1 Arithmetic -- 3.9.2 Conjugation -- 3.9.3 Units -- 3.9.4 Polynomials and roots -- 3.10 Summary -- Chapter 4: Planes and Circles and Spheres, Oh My -- 4.1 Functions -- 4.2 The real plane -- 4.2.1 Moving to two dimensions -- 4.2.2 Distance and length -- 4.2.3 Geometric figures in the real plane -- 4.2.4 Exponentials and logarithms -- 4.3 Trigonometry -- 4.3.1 The fundamental functions -- 4.3.2 The inverse functions -- 4.3.3 Additional identities -- 4.4 From Cartesian to polar coordinates -- 4.5 The complex ''plane'' -- 4.6 Real three dimensions | |
505 | 8 | |a 4.7 Summary -- Chapter 5: Dimensions -- 5.1 R2 and C2 -- 5.2 Vector spaces -- 5.3 Linear maps -- 5.3.1 Algebraic structure of linear transformations -- 5.3.2 Example linear transformations on R2 -- 5.4 Matrices -- 5.4.1 Notation and terminology -- 5.4.2 Matrices and linear maps -- 5.5 Matrix algebra -- 5.5.1 Arithmetic of general matrices -- 5.5.2 Arithmetic of square matrices -- 5.6 Cartesian products -- 5.7 Length and preserving it -- 5.7.1 Dot products -- 5.7.2 Inner products -- 5.7.3 Euclidean norm -- 5.7.4 Reflections again -- 5.7.5 Unitary transformations | |
505 | 8 | |a 5.7.6 Systems of linear equations -- 5.8 Change of basis -- 5.9 Eigenvectors and eigenvalues -- 5.10 Direct sums -- 5.11 Homomorphisms -- 5.11.1 Group homomorphisms -- 5.11.2 Ring and field homomorphisms -- 5.11.3 Vector space homomorphisms -- 5.12 Summary -- Chapter 6: What Do You Mean ""Probably""? -- 6.1 Being discrete -- 6.2 More formally -- 6.3 Wrong again? -- 6.4 Probability and error detection -- 6.5 Randomness -- 6.6 Expectation -- 6.7 Markov and Chebyshev go to the casino -- 6.8 Summary -- II Quantum Computing -- Chapter 7: One Qubit -- 7.1 Introducing quantum bits -- 7.2 Bras and kets | |
650 | 4 | |a Quantum computing | |
650 | 7 | |a Quantum computing |2 fast | |
650 | 0 | 7 | |a Qubit |0 (DE-588)4842734-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantencomputer |0 (DE-588)4533372-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantencomputer |0 (DE-588)4533372-5 |D s |
689 | 0 | 1 | |a Qubit |0 (DE-588)4842734-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83882-736-6 |
912 | |a ZDB-30-PQE |a ZDB-5-WPSE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032325347 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=5995524 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/fuberlin-ebooks/detail.action?docID=5995524 |l FUBA1 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181799967916032 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sutor, Robert S. |
author_GND | (DE-588)1218721464 |
author_facet | Sutor, Robert S. |
author_role | aut |
author_sort | Sutor, Robert S. |
author_variant | r s s rs rss |
building | Verbundindex |
bvnumber | BV046916025 |
classification_rvk | ST 152 |
collection | ZDB-30-PQE ZDB-5-WPSE |
contents | Cover -- Title Page -- Copyright -- Packt page -- Dedication -- Contributors -- Contents -- List of Figures -- Preface -- Chapter 1: Why Quantum Computing? -- 1.1 The mysterious quantum bit -- 1.2 I'm awake! -- 1.3 Why quantum computing is different -- 1.4 Applications to artificial intelligence -- 1.5 Applications to financial services -- 1.6 What about cryptography? -- 1.7 Summary -- I Foundations -- Chapter 2: They're Not Old, They're Classics -- 2.1 What's inside a computer? -- 2.2 The power of two -- 2.3 True or false? -- 2.4 Logic circuits -- 2.5 Addition, logically 2.6 Algorithmically speaking -- 2.7 Growth, exponential and otherwise -- 2.8 How hard can that be? -- 2.8.1 Sorting -- 2.8.2 Searching -- 2.9 Summary -- Chapter 3: More Numbers than You Can Imagine -- 3.1 Natural numbers -- 3.2 Whole numbers -- 3.3 Integers -- 3.4 Rational numbers -- 3.4.1 Fractions -- 3.4.2 Getting formal again -- 3.5 Real numbers -- 3.5.1 Decimals -- 3.5.2 Irrationals and limits -- 3.5.3 Binary forms -- 3.5.4 Continued fractions -- 3.6 Structure -- 3.6.1 Groups -- 3.6.2 Rings -- 3.6.3 Fields -- 3.6.4 Even greater abstraction -- 3.7 Modular arithmetic -- 3.8 Doubling down 3.9 Complex numbers, algebraically -- 3.9.1 Arithmetic -- 3.9.2 Conjugation -- 3.9.3 Units -- 3.9.4 Polynomials and roots -- 3.10 Summary -- Chapter 4: Planes and Circles and Spheres, Oh My -- 4.1 Functions -- 4.2 The real plane -- 4.2.1 Moving to two dimensions -- 4.2.2 Distance and length -- 4.2.3 Geometric figures in the real plane -- 4.2.4 Exponentials and logarithms -- 4.3 Trigonometry -- 4.3.1 The fundamental functions -- 4.3.2 The inverse functions -- 4.3.3 Additional identities -- 4.4 From Cartesian to polar coordinates -- 4.5 The complex ''plane'' -- 4.6 Real three dimensions 4.7 Summary -- Chapter 5: Dimensions -- 5.1 R2 and C2 -- 5.2 Vector spaces -- 5.3 Linear maps -- 5.3.1 Algebraic structure of linear transformations -- 5.3.2 Example linear transformations on R2 -- 5.4 Matrices -- 5.4.1 Notation and terminology -- 5.4.2 Matrices and linear maps -- 5.5 Matrix algebra -- 5.5.1 Arithmetic of general matrices -- 5.5.2 Arithmetic of square matrices -- 5.6 Cartesian products -- 5.7 Length and preserving it -- 5.7.1 Dot products -- 5.7.2 Inner products -- 5.7.3 Euclidean norm -- 5.7.4 Reflections again -- 5.7.5 Unitary transformations 5.7.6 Systems of linear equations -- 5.8 Change of basis -- 5.9 Eigenvectors and eigenvalues -- 5.10 Direct sums -- 5.11 Homomorphisms -- 5.11.1 Group homomorphisms -- 5.11.2 Ring and field homomorphisms -- 5.11.3 Vector space homomorphisms -- 5.12 Summary -- Chapter 6: What Do You Mean ""Probably""? -- 6.1 Being discrete -- 6.2 More formally -- 6.3 Wrong again? -- 6.4 Probability and error detection -- 6.5 Randomness -- 6.6 Expectation -- 6.7 Markov and Chebyshev go to the casino -- 6.8 Summary -- II Quantum Computing -- Chapter 7: One Qubit -- 7.1 Introducing quantum bits -- 7.2 Bras and kets |
ctrlnum | (OCoLC)1199068369 (DE-599)BVBBV046916025 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04726nmm a2200481 c 4500</leader><controlfield tag="001">BV046916025</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200928s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838825256</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-83882-525-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1199068369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046916025</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 152</subfield><subfield code="0">(DE-625)143596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sutor, Robert S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1218721464</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dancing with qubits</subfield><subfield code="b">how quantum computing works and how it can change the world</subfield><subfield code="c">Robert S. Sutor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 488 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Expert insight</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.3 The complex math and physics of a single qubit</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Packt page -- Dedication -- Contributors -- Contents -- List of Figures -- Preface -- Chapter 1: Why Quantum Computing? -- 1.1 The mysterious quantum bit -- 1.2 I'm awake! -- 1.3 Why quantum computing is different -- 1.4 Applications to artificial intelligence -- 1.5 Applications to financial services -- 1.6 What about cryptography? -- 1.7 Summary -- I Foundations -- Chapter 2: They're Not Old, They're Classics -- 2.1 What's inside a computer? -- 2.2 The power of two -- 2.3 True or false? -- 2.4 Logic circuits -- 2.5 Addition, logically</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.6 Algorithmically speaking -- 2.7 Growth, exponential and otherwise -- 2.8 How hard can that be? -- 2.8.1 Sorting -- 2.8.2 Searching -- 2.9 Summary -- Chapter 3: More Numbers than You Can Imagine -- 3.1 Natural numbers -- 3.2 Whole numbers -- 3.3 Integers -- 3.4 Rational numbers -- 3.4.1 Fractions -- 3.4.2 Getting formal again -- 3.5 Real numbers -- 3.5.1 Decimals -- 3.5.2 Irrationals and limits -- 3.5.3 Binary forms -- 3.5.4 Continued fractions -- 3.6 Structure -- 3.6.1 Groups -- 3.6.2 Rings -- 3.6.3 Fields -- 3.6.4 Even greater abstraction -- 3.7 Modular arithmetic -- 3.8 Doubling down</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.9 Complex numbers, algebraically -- 3.9.1 Arithmetic -- 3.9.2 Conjugation -- 3.9.3 Units -- 3.9.4 Polynomials and roots -- 3.10 Summary -- Chapter 4: Planes and Circles and Spheres, Oh My -- 4.1 Functions -- 4.2 The real plane -- 4.2.1 Moving to two dimensions -- 4.2.2 Distance and length -- 4.2.3 Geometric figures in the real plane -- 4.2.4 Exponentials and logarithms -- 4.3 Trigonometry -- 4.3.1 The fundamental functions -- 4.3.2 The inverse functions -- 4.3.3 Additional identities -- 4.4 From Cartesian to polar coordinates -- 4.5 The complex ''plane'' -- 4.6 Real three dimensions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.7 Summary -- Chapter 5: Dimensions -- 5.1 R2 and C2 -- 5.2 Vector spaces -- 5.3 Linear maps -- 5.3.1 Algebraic structure of linear transformations -- 5.3.2 Example linear transformations on R2 -- 5.4 Matrices -- 5.4.1 Notation and terminology -- 5.4.2 Matrices and linear maps -- 5.5 Matrix algebra -- 5.5.1 Arithmetic of general matrices -- 5.5.2 Arithmetic of square matrices -- 5.6 Cartesian products -- 5.7 Length and preserving it -- 5.7.1 Dot products -- 5.7.2 Inner products -- 5.7.3 Euclidean norm -- 5.7.4 Reflections again -- 5.7.5 Unitary transformations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.7.6 Systems of linear equations -- 5.8 Change of basis -- 5.9 Eigenvectors and eigenvalues -- 5.10 Direct sums -- 5.11 Homomorphisms -- 5.11.1 Group homomorphisms -- 5.11.2 Ring and field homomorphisms -- 5.11.3 Vector space homomorphisms -- 5.12 Summary -- Chapter 6: What Do You Mean ""Probably""? -- 6.1 Being discrete -- 6.2 More formally -- 6.3 Wrong again? -- 6.4 Probability and error detection -- 6.5 Randomness -- 6.6 Expectation -- 6.7 Markov and Chebyshev go to the casino -- 6.8 Summary -- II Quantum Computing -- Chapter 7: One Qubit -- 7.1 Introducing quantum bits -- 7.2 Bras and kets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computing</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum computing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Qubit</subfield><subfield code="0">(DE-588)4842734-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Qubit</subfield><subfield code="0">(DE-588)4842734-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83882-736-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-5-WPSE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032325347</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=5995524</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fuberlin-ebooks/detail.action?docID=5995524</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046916025 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:29:40Z |
indexdate | 2024-07-10T08:57:24Z |
institution | BVB |
isbn | 9781838825256 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032325347 |
oclc_num | 1199068369 |
open_access_boolean | |
owner | DE-1050 DE-188 |
owner_facet | DE-1050 DE-188 |
physical | 1 Online-Ressource (xviii, 488 Seiten) Diagramme |
psigel | ZDB-30-PQE ZDB-5-WPSE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing |
record_format | marc |
series2 | Expert insight |
spelling | Sutor, Robert S. Verfasser (DE-588)1218721464 aut Dancing with qubits how quantum computing works and how it can change the world Robert S. Sutor Birmingham ; Mumbai Packt Publishing [2019] 1 Online-Ressource (xviii, 488 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Expert insight 7.3 The complex math and physics of a single qubit Cover -- Title Page -- Copyright -- Packt page -- Dedication -- Contributors -- Contents -- List of Figures -- Preface -- Chapter 1: Why Quantum Computing? -- 1.1 The mysterious quantum bit -- 1.2 I'm awake! -- 1.3 Why quantum computing is different -- 1.4 Applications to artificial intelligence -- 1.5 Applications to financial services -- 1.6 What about cryptography? -- 1.7 Summary -- I Foundations -- Chapter 2: They're Not Old, They're Classics -- 2.1 What's inside a computer? -- 2.2 The power of two -- 2.3 True or false? -- 2.4 Logic circuits -- 2.5 Addition, logically 2.6 Algorithmically speaking -- 2.7 Growth, exponential and otherwise -- 2.8 How hard can that be? -- 2.8.1 Sorting -- 2.8.2 Searching -- 2.9 Summary -- Chapter 3: More Numbers than You Can Imagine -- 3.1 Natural numbers -- 3.2 Whole numbers -- 3.3 Integers -- 3.4 Rational numbers -- 3.4.1 Fractions -- 3.4.2 Getting formal again -- 3.5 Real numbers -- 3.5.1 Decimals -- 3.5.2 Irrationals and limits -- 3.5.3 Binary forms -- 3.5.4 Continued fractions -- 3.6 Structure -- 3.6.1 Groups -- 3.6.2 Rings -- 3.6.3 Fields -- 3.6.4 Even greater abstraction -- 3.7 Modular arithmetic -- 3.8 Doubling down 3.9 Complex numbers, algebraically -- 3.9.1 Arithmetic -- 3.9.2 Conjugation -- 3.9.3 Units -- 3.9.4 Polynomials and roots -- 3.10 Summary -- Chapter 4: Planes and Circles and Spheres, Oh My -- 4.1 Functions -- 4.2 The real plane -- 4.2.1 Moving to two dimensions -- 4.2.2 Distance and length -- 4.2.3 Geometric figures in the real plane -- 4.2.4 Exponentials and logarithms -- 4.3 Trigonometry -- 4.3.1 The fundamental functions -- 4.3.2 The inverse functions -- 4.3.3 Additional identities -- 4.4 From Cartesian to polar coordinates -- 4.5 The complex ''plane'' -- 4.6 Real three dimensions 4.7 Summary -- Chapter 5: Dimensions -- 5.1 R2 and C2 -- 5.2 Vector spaces -- 5.3 Linear maps -- 5.3.1 Algebraic structure of linear transformations -- 5.3.2 Example linear transformations on R2 -- 5.4 Matrices -- 5.4.1 Notation and terminology -- 5.4.2 Matrices and linear maps -- 5.5 Matrix algebra -- 5.5.1 Arithmetic of general matrices -- 5.5.2 Arithmetic of square matrices -- 5.6 Cartesian products -- 5.7 Length and preserving it -- 5.7.1 Dot products -- 5.7.2 Inner products -- 5.7.3 Euclidean norm -- 5.7.4 Reflections again -- 5.7.5 Unitary transformations 5.7.6 Systems of linear equations -- 5.8 Change of basis -- 5.9 Eigenvectors and eigenvalues -- 5.10 Direct sums -- 5.11 Homomorphisms -- 5.11.1 Group homomorphisms -- 5.11.2 Ring and field homomorphisms -- 5.11.3 Vector space homomorphisms -- 5.12 Summary -- Chapter 6: What Do You Mean ""Probably""? -- 6.1 Being discrete -- 6.2 More formally -- 6.3 Wrong again? -- 6.4 Probability and error detection -- 6.5 Randomness -- 6.6 Expectation -- 6.7 Markov and Chebyshev go to the casino -- 6.8 Summary -- II Quantum Computing -- Chapter 7: One Qubit -- 7.1 Introducing quantum bits -- 7.2 Bras and kets Quantum computing Quantum computing fast Qubit (DE-588)4842734-2 gnd rswk-swf Quantencomputer (DE-588)4533372-5 gnd rswk-swf Quantencomputer (DE-588)4533372-5 s Qubit (DE-588)4842734-2 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-83882-736-6 |
spellingShingle | Sutor, Robert S. Dancing with qubits how quantum computing works and how it can change the world Cover -- Title Page -- Copyright -- Packt page -- Dedication -- Contributors -- Contents -- List of Figures -- Preface -- Chapter 1: Why Quantum Computing? -- 1.1 The mysterious quantum bit -- 1.2 I'm awake! -- 1.3 Why quantum computing is different -- 1.4 Applications to artificial intelligence -- 1.5 Applications to financial services -- 1.6 What about cryptography? -- 1.7 Summary -- I Foundations -- Chapter 2: They're Not Old, They're Classics -- 2.1 What's inside a computer? -- 2.2 The power of two -- 2.3 True or false? -- 2.4 Logic circuits -- 2.5 Addition, logically 2.6 Algorithmically speaking -- 2.7 Growth, exponential and otherwise -- 2.8 How hard can that be? -- 2.8.1 Sorting -- 2.8.2 Searching -- 2.9 Summary -- Chapter 3: More Numbers than You Can Imagine -- 3.1 Natural numbers -- 3.2 Whole numbers -- 3.3 Integers -- 3.4 Rational numbers -- 3.4.1 Fractions -- 3.4.2 Getting formal again -- 3.5 Real numbers -- 3.5.1 Decimals -- 3.5.2 Irrationals and limits -- 3.5.3 Binary forms -- 3.5.4 Continued fractions -- 3.6 Structure -- 3.6.1 Groups -- 3.6.2 Rings -- 3.6.3 Fields -- 3.6.4 Even greater abstraction -- 3.7 Modular arithmetic -- 3.8 Doubling down 3.9 Complex numbers, algebraically -- 3.9.1 Arithmetic -- 3.9.2 Conjugation -- 3.9.3 Units -- 3.9.4 Polynomials and roots -- 3.10 Summary -- Chapter 4: Planes and Circles and Spheres, Oh My -- 4.1 Functions -- 4.2 The real plane -- 4.2.1 Moving to two dimensions -- 4.2.2 Distance and length -- 4.2.3 Geometric figures in the real plane -- 4.2.4 Exponentials and logarithms -- 4.3 Trigonometry -- 4.3.1 The fundamental functions -- 4.3.2 The inverse functions -- 4.3.3 Additional identities -- 4.4 From Cartesian to polar coordinates -- 4.5 The complex ''plane'' -- 4.6 Real three dimensions 4.7 Summary -- Chapter 5: Dimensions -- 5.1 R2 and C2 -- 5.2 Vector spaces -- 5.3 Linear maps -- 5.3.1 Algebraic structure of linear transformations -- 5.3.2 Example linear transformations on R2 -- 5.4 Matrices -- 5.4.1 Notation and terminology -- 5.4.2 Matrices and linear maps -- 5.5 Matrix algebra -- 5.5.1 Arithmetic of general matrices -- 5.5.2 Arithmetic of square matrices -- 5.6 Cartesian products -- 5.7 Length and preserving it -- 5.7.1 Dot products -- 5.7.2 Inner products -- 5.7.3 Euclidean norm -- 5.7.4 Reflections again -- 5.7.5 Unitary transformations 5.7.6 Systems of linear equations -- 5.8 Change of basis -- 5.9 Eigenvectors and eigenvalues -- 5.10 Direct sums -- 5.11 Homomorphisms -- 5.11.1 Group homomorphisms -- 5.11.2 Ring and field homomorphisms -- 5.11.3 Vector space homomorphisms -- 5.12 Summary -- Chapter 6: What Do You Mean ""Probably""? -- 6.1 Being discrete -- 6.2 More formally -- 6.3 Wrong again? -- 6.4 Probability and error detection -- 6.5 Randomness -- 6.6 Expectation -- 6.7 Markov and Chebyshev go to the casino -- 6.8 Summary -- II Quantum Computing -- Chapter 7: One Qubit -- 7.1 Introducing quantum bits -- 7.2 Bras and kets Quantum computing Quantum computing fast Qubit (DE-588)4842734-2 gnd Quantencomputer (DE-588)4533372-5 gnd |
subject_GND | (DE-588)4842734-2 (DE-588)4533372-5 |
title | Dancing with qubits how quantum computing works and how it can change the world |
title_auth | Dancing with qubits how quantum computing works and how it can change the world |
title_exact_search | Dancing with qubits how quantum computing works and how it can change the world |
title_exact_search_txtP | Dancing with qubits how quantum computing works and how it can change the world |
title_full | Dancing with qubits how quantum computing works and how it can change the world Robert S. Sutor |
title_fullStr | Dancing with qubits how quantum computing works and how it can change the world Robert S. Sutor |
title_full_unstemmed | Dancing with qubits how quantum computing works and how it can change the world Robert S. Sutor |
title_short | Dancing with qubits |
title_sort | dancing with qubits how quantum computing works and how it can change the world |
title_sub | how quantum computing works and how it can change the world |
topic | Quantum computing Quantum computing fast Qubit (DE-588)4842734-2 gnd Quantencomputer (DE-588)4533372-5 gnd |
topic_facet | Quantum computing Qubit Quantencomputer |
work_keys_str_mv | AT sutorroberts dancingwithqubitshowquantumcomputingworksandhowitcanchangetheworld |